polars_rows_iter/dataframe_rows_iter_ext.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
use std::collections::HashMap;
use polars::prelude::*;
use crate::{ColumnNameBuilder, FromDataFrameRow};
pub trait DataframeRowsIterExt<'a> {
fn rows_iter<T>(&'a self) -> PolarsResult<Box<dyn Iterator<Item = PolarsResult<T>> + 'a>>
where
T: FromDataFrameRow<'a>;
fn rows_iter_with_columns<T>(
&'a self,
build_fn: impl FnOnce(&mut T::Builder) -> &mut T::Builder,
) -> PolarsResult<Box<dyn Iterator<Item = PolarsResult<T>> + 'a>>
where
T: FromDataFrameRow<'a>;
}
impl<'a> DataframeRowsIterExt<'a> for DataFrame {
/// Creates a row iterator for this DataFrame with static column names defined in row struct
/// ```rust
/// use polars::prelude::*;
/// use polars_rows_iter::*;
///
/// #[derive(Debug, FromDataFrameRow)]
/// #[derive(PartialEq)] // for assert_eq
/// struct MyRow<'a>
/// {
/// #[column("col_a")]
/// a: i32,
/// // the column name defaults to the field name if no explicit name given
/// col_b: &'a str,
/// col_c: String,
/// #[column("col_d")]
/// optional: Option<f64>
/// }
///
/// let df = df!(
/// "col_a" => [1i32, 2, 3, 4, 5],
/// "col_b" => ["a", "b", "c", "d", "e"],
/// "col_c" => ["A", "B", "C", "D", "E"],
/// "col_d" => [Some(1.0f64), None, None, Some(2.0), Some(3.0)]
/// ).unwrap();
///
/// let rows_iter = df.rows_iter::<MyRow>().unwrap(); // ready to use row iterator
/// // collect to vector for assert_eq
/// let rows_vec = rows_iter.collect::<PolarsResult<Vec<MyRow>>>().unwrap();
///
/// assert_eq!(
/// rows_vec,
/// [
/// MyRow { a: 1, col_b: "a", col_c: "A".to_string(), optional: Some(1.0) },
/// MyRow { a: 2, col_b: "b", col_c: "B".to_string(), optional: None },
/// MyRow { a: 3, col_b: "c", col_c: "C".to_string(), optional: None },
/// MyRow { a: 4, col_b: "d", col_c: "D".to_string(), optional: Some(2.0) },
/// MyRow { a: 5, col_b: "e", col_c: "E".to_string(), optional: Some(3.0) },
/// ]
/// );
/// ```
fn rows_iter<T>(&'a self) -> PolarsResult<Box<dyn Iterator<Item = PolarsResult<T>> + 'a>>
where
T: FromDataFrameRow<'a>,
{
T::from_dataframe(self, HashMap::new())
}
/// Creates a row iterator for this DataFrame with custom column names, which can be defined over the lambda function
/// for every struct field. If no custom column name for a field is given, the column name falls back to
/// the statically defined one.
///```rust
///use polars::prelude::*;
///use polars_rows_iter::*;
///
///const ID: &str = "id";
///
///#[derive(Debug, FromDataFrameRow)]
///#[derive(PartialEq)] // for assert_eq
///struct MyRow<'a> {
/// #[column(ID)]
/// id: i32,
/// value_b: &'a str,
/// value_c: String,
/// optional: Option<f64>,
///}
///
/// let df = df!(
/// "id" => [1i32, 2, 3, 4, 5],
/// "col_b" => ["a", "b", "c", "d", "e"],
/// "col_c" => ["A", "B", "C", "D", "E"],
/// "col_d" => [Some(1.0f64), None, None, Some(2.0), Some(3.0)]
/// ).unwrap();
///
/// let value_b_column_name = "col_b".to_string();
/// let value_c_column_name = "col_c";
///
/// let rows_iter = df.rows_iter_with_columns::<MyRow>(|columns| {
/// columns
/// .value_b(&value_b_column_name)
/// .value_c(value_c_column_name)
/// .optional("col_d")
/// }).unwrap();
///
/// // collect to vector for assert_eq
/// let rows_vec = rows_iter.collect::<PolarsResult<Vec<MyRow>>>().unwrap();
///
/// assert_eq!(
/// rows_vec,
/// [
/// MyRow { id: 1, value_b: "a", value_c: "A".to_string(), optional: Some(1.0) },
/// MyRow { id: 2, value_b: "b", value_c: "B".to_string(), optional: None },
/// MyRow { id: 3, value_b: "c", value_c: "C".to_string(), optional: None },
/// MyRow { id: 4, value_b: "d", value_c: "D".to_string(), optional: Some(2.0) },
/// MyRow { id: 5, value_b: "e", value_c: "E".to_string(), optional: Some(3.0) },
/// ]
/// );
///```
fn rows_iter_with_columns<T>(
&'a self,
build_fn: impl FnOnce(&mut T::Builder) -> &mut T::Builder,
) -> PolarsResult<Box<dyn Iterator<Item = PolarsResult<T>> + 'a>>
where
T: FromDataFrameRow<'a>,
{
let mut builder = T::create_builder();
build_fn(&mut builder);
let columns = builder.build();
T::from_dataframe(self, columns)
}
}
#[cfg(test)]
mod tests {
#![allow(dead_code)]
use polars::df;
use crate::*;
#[derive(FromDataFrameRow)]
struct TestStruct {
x1: i32,
x2: i32,
}
#[test]
fn rows_iter_should_return_error_when_given_column_not_available() {
let df = df!(
"y1" => [1i32, 2, 3],
"x2" => [1i32, 2, 3]
)
.unwrap();
let result = df.rows_iter::<TestStruct>();
assert!(result.is_err());
}
#[test]
fn builder_should_build_hashmap_with_correct_entries() {
let mut builder = TestStruct::create_builder();
builder.x1("column_1").x2("column_2");
let columns = builder.build();
assert_eq!("column_1", *columns.get("x1").unwrap());
assert_eq!("column_2", *columns.get("x2").unwrap());
}
#[test]
fn rows_iter_with_columns_should_return_error_when_given_column_not_available() {
let df = df!(
"x1" => [1i32, 2, 3],
"x2" => [1i32, 2, 3]
)
.unwrap();
let result = df.rows_iter_with_columns::<TestStruct>(|b| b.x1("y1"));
assert!(result.is_err());
}
#[test]
fn rows_iter_with_columns_should_return_valid_iter() {
let df = df!(
"x_1" => [1i32, 2, 3],
"x_2" => [1i32, 2, 3]
)
.unwrap();
let result = df.rows_iter_with_columns::<TestStruct>(|b| b.x1("x_1").x2("x_2"));
assert!(result.is_ok());
}
}