polars_rows_iter/iter_from_column/
iter_from_column_str.rsuse super::*;
use iter_from_column::IterFromColumn;
use polars::prelude::*;
impl<'a> IterFromColumn<'a> for &'a str {
type RawInner = &'a str;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a str>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
polars_value.ok_or_else(|| <&'a str as IterFromColumn<'a>>::unexpected_null_value_error(column_name))
}
}
impl<'a> IterFromColumn<'a> for Option<&'a str> {
type RawInner = &'a str;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a str>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
Ok(polars_value)
}
}
fn create_str_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
let inner = column.str()?.iter();
Ok(Box::new(inner))
}
#[cfg(feature = "dtype-categorical")]
fn create_cat_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
let inner = column.categorical()?.iter_str();
Ok(Box::new(inner))
}
fn create_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
let iter = match column.dtype() {
DataType::String => create_str_iter(column)?,
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_, _) => create_cat_iter(column)?,
dtype => {
let column_name = column.name().as_str();
return Err(
polars_err!(SchemaMismatch: "Cannot get &str from column '{column_name}' with dtype : {dtype}"),
);
}
};
Ok(iter)
}
#[cfg(test)]
mod tests {
use crate::*;
use itertools::{izip, Itertools};
use polars::prelude::*;
use rand::{rngs::StdRng, SeedableRng};
use shared_test_helpers::*;
const ROW_COUNT: usize = 64;
#[test]
fn str_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::String;
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col.str().unwrap().iter().map(|v| v.unwrap().to_owned()).collect_vec();
let col_opt_values = col_opt
.str()
.unwrap()
.iter()
.map(|v| v.map(|s| s.to_owned()))
.collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.iter();
let col_opt_iter = col_opt_values.iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow {
col: col.as_ref(),
col_opt: col_opt.as_ref().map(|v| v.as_str()),
})
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow<'a> {
col: &'a str,
col_opt: Option<&'a str>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
#[cfg(feature = "dtype-categorical")]
#[test]
fn cat_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::Categorical(None, CategoricalOrdering::Physical);
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col
.categorical()
.unwrap()
.iter_str()
.map(|v| v.unwrap().to_owned())
.collect_vec();
let col_opt_values = col_opt
.categorical()
.unwrap()
.iter_str()
.map(|v| v.map(|s| s.to_owned()))
.collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.iter();
let col_opt_iter = col_opt_values.iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow {
col: col.as_ref(),
col_opt: col_opt.as_ref().map(|v| v.as_str()),
})
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow<'a> {
col: &'a str,
col_opt: Option<&'a str>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
}