polars_rows_iter/iter_from_column/
iter_from_column_i32.rsuse super::*;
use polars::prelude::*;
impl<'a> IterFromColumn<'a> for i32 {
type RawInner = i32;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<i32>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
polars_value.ok_or_else(|| <i32 as IterFromColumn<'a>>::unexpected_null_value_error(column_name))
}
}
impl<'a> IterFromColumn<'a> for Option<i32> {
type RawInner = i32;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<i32>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
Ok(polars_value)
}
}
fn create_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
let column_name = column.name().as_str();
let iter = match column.dtype() {
DataType::Int32 => Box::new(column.i32()?.into_iter()),
DataType::Date => Box::new(column.date()?.into_iter()),
dtype => {
return Err(polars_err!(SchemaMismatch: "Cannot get i32 from column '{column_name}' with dtype : {dtype}"))
}
};
Ok(iter)
}
#[cfg(test)]
mod tests {
const ROW_COUNT: usize = 64;
use crate::*;
use itertools::{izip, Itertools};
use polars::prelude::*;
use rand::{rngs::StdRng, SeedableRng};
use shared_test_helpers::*;
create_test_for_type!(i32_test, i32, i32, DataType::Int32, ROW_COUNT);
create_test_for_type!(i32_as_date_test, i32, date, DataType::Date, ROW_COUNT);
#[test]
fn my_test<'a>() {
let mut rng = StdRng::seed_from_u64(0);
let height = 64;
let dtype = DataType::Time;
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let column = Column::new("name".into(), vec![12345680000000i64]);
println!("{column:?}");
let column = column.cast(&DataType::Time).unwrap();
println!("{column:?}");
println!("{col:?}");
println!("{col_opt:?}");
let col_values = col
.as_series()
.unwrap()
.time()
.unwrap()
.into_iter()
.map(|v| v.unwrap())
.collect_vec();
let col_opt_values = col_opt.as_series().unwrap().time().unwrap().into_iter().collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.into_iter();
let col_opt_iter = col_opt_values.into_iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow {
col: i64,
col_opt: Option<i64>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
}