polars_rows_iter/iter_from_column/
iter_from_column_str.rs1use super::*;
2use iter_from_column_trait::IterFromColumn;
3use polars::prelude::*;
4
5impl<'a> IterFromColumn<'a> for &'a str {
6 type RawInner = &'a str;
7 fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
8 create_iter(column)
9 }
10
11 #[inline]
12 fn get_value(polars_value: Option<&'a str>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
13 where
14 Self: Sized,
15 {
16 polars_value.ok_or_else(|| <&'a str as IterFromColumn<'a>>::unexpected_null_value_error(column_name))
17 }
18}
19
20impl<'a> IterFromColumn<'a> for Option<&'a str> {
21 type RawInner = &'a str;
22 fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
23 create_iter(column)
24 }
25
26 #[inline]
27 fn get_value(polars_value: Option<&'a str>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
28 where
29 Self: Sized,
30 {
31 Ok(polars_value)
32 }
33}
34
35fn create_str_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
36 Ok(Box::new(column.str()?.iter()))
37}
38
39#[cfg(feature = "dtype-categorical")]
40fn create_cat_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
41 Ok(Box::new(column.cat32()?.iter_str()))
42}
43
44#[cfg(feature = "dtype-categorical")]
45fn create_enum_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
46 Ok(Box::new(column.cat8()?.iter_str()))
47}
48
49pub fn create_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
50 let iter = match column.dtype() {
51 DataType::String => create_str_iter(column)?,
52 #[cfg(feature = "dtype-categorical")]
53 DataType::Categorical(_, _) => create_cat_iter(column)?,
54 #[cfg(feature = "dtype-categorical")]
55 DataType::Enum(_, _) => create_enum_iter(column)?,
56 dtype => {
57 let column_name = column.name().as_str();
58 return Err(
59 polars_err!(SchemaMismatch: "Cannot get &str from column '{column_name}' with dtype '{dtype}'.\
60 Make sure to enable 'dtype-categorical' feature for 'Categorical' and 'Enum' dtypes."),
61 );
62 }
63 };
64
65 Ok(iter)
66}
67
68#[cfg(test)]
69mod tests {
70 use crate::*;
71 use itertools::{izip, Itertools};
72 use polars::prelude::*;
73 use rand::{rngs::StdRng, SeedableRng};
74 use shared_test_helpers::*;
75
76 const ROW_COUNT: usize = 64;
77
78 #[test]
79 fn str_test() {
80 let mut rng = StdRng::seed_from_u64(0);
81 let height = ROW_COUNT;
82 let dtype = DataType::String;
83
84 let col = create_column("col", dtype.clone(), false, height, &mut rng);
85 let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
86
87 let col_values = col.str().unwrap().iter().map(|v| v.unwrap().to_owned()).collect_vec();
88 let col_opt_values = col_opt
89 .str()
90 .unwrap()
91 .iter()
92 .map(|v| v.map(|s| s.to_owned()))
93 .collect_vec();
94
95 let df = DataFrame::new(vec![col, col_opt]).unwrap();
96
97 let col_iter = col_values.iter();
98 let col_opt_iter = col_opt_values.iter();
99
100 let expected_rows = izip!(col_iter, col_opt_iter)
101 .map(|(col, col_opt)| TestRow {
102 col: col.as_ref(),
103 col_opt: col_opt.as_ref().map(|v| v.as_str()),
104 })
105 .collect_vec();
106
107 #[derive(Debug, FromDataFrameRow, PartialEq)]
108 struct TestRow<'a> {
109 col: &'a str,
110 col_opt: Option<&'a str>,
111 }
112
113 let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
114
115 assert_eq!(rows, expected_rows)
116 }
117
118 #[cfg(feature = "dtype-categorical")]
119 #[test]
120 fn cat_test() {
121 let mut rng = StdRng::seed_from_u64(0);
122 let height = ROW_COUNT;
123
124 let cats = Categories::new(PlSmallStr::EMPTY, PlSmallStr::EMPTY, CategoricalPhysical::U32);
125 let dtype = DataType::from_categories(cats);
126
127 let col = create_column("col", dtype.clone(), false, height, &mut rng);
128 let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
129
130 let col_values = col
131 .cat32()
132 .unwrap()
133 .iter_str()
134 .map(|v| v.unwrap().to_owned())
135 .collect_vec();
136 let col_opt_values = col_opt
137 .cat32()
138 .unwrap()
139 .iter_str()
140 .map(|v| v.map(|s| s.to_owned()))
141 .collect_vec();
142
143 let df = DataFrame::new(vec![col, col_opt]).unwrap();
144
145 let col_iter = col_values.iter();
146 let col_opt_iter = col_opt_values.iter();
147
148 let expected_rows = izip!(col_iter, col_opt_iter)
149 .map(|(col, col_opt)| TestRow {
150 col: col.as_ref(),
151 col_opt: col_opt.as_ref().map(|v| v.as_str()),
152 })
153 .collect_vec();
154
155 #[derive(Debug, FromDataFrameRow, PartialEq)]
156 struct TestRow<'a> {
157 col: &'a str,
158 col_opt: Option<&'a str>,
159 }
160
161 let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
162
163 assert_eq!(rows, expected_rows)
164 }
165
166 #[cfg(feature = "dtype-categorical")]
167 #[test]
168 fn enum_test() {
169 let mut rng = StdRng::seed_from_u64(0);
170 let height = ROW_COUNT;
171
172 let categories = FrozenCategories::new(["A", "B", "C", "D", "E"]).unwrap();
173 let dtype = DataType::from_frozen_categories(categories);
174
175 let col = create_column("col", dtype.clone(), false, height, &mut rng);
176 let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
177
178 let col_values = col
179 .cat8()
180 .unwrap()
181 .iter_str()
182 .map(|v| v.unwrap().to_owned())
183 .collect_vec();
184 let col_opt_values = col_opt
185 .cat8()
186 .unwrap()
187 .iter_str()
188 .map(|v| v.map(|s| s.to_owned()))
189 .collect_vec();
190
191 let df = DataFrame::new(vec![col, col_opt]).unwrap();
192
193 let col_iter = col_values.iter();
194 let col_opt_iter = col_opt_values.iter();
195
196 let expected_rows = izip!(col_iter, col_opt_iter)
197 .map(|(col, col_opt)| TestRow {
198 col: col.as_ref(),
199 col_opt: col_opt.as_ref().map(|v| v.as_str()),
200 })
201 .collect_vec();
202
203 #[derive(Debug, FromDataFrameRow, PartialEq)]
204 struct TestRow<'a> {
205 col: &'a str,
206 col_opt: Option<&'a str>,
207 }
208
209 let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
210
211 assert_eq!(rows, expected_rows)
212 }
213}