polars_rows_iter/iter_from_column/
iter_from_column_i32.rs1use super::*;
2use polars::prelude::*;
3
4impl<'a> IterFromColumn<'a> for i32 {
5 type RawInner = i32;
6 fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
7 create_iter(column)
8 }
9
10 #[inline]
11 fn get_value(polars_value: Option<i32>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
12 where
13 Self: Sized,
14 {
15 polars_value.ok_or_else(|| <i32 as IterFromColumn<'a>>::unexpected_null_value_error(column_name))
16 }
17}
18
19impl<'a> IterFromColumn<'a> for Option<i32> {
20 type RawInner = i32;
21 fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
22 create_iter(column)
23 }
24
25 #[inline]
26 fn get_value(polars_value: Option<i32>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
27 where
28 Self: Sized,
29 {
30 Ok(polars_value)
31 }
32}
33
34fn create_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<i32>> + 'a>> {
35 let column_name = column.name().as_str();
36 let iter = match column.dtype() {
37 DataType::Int32 => Box::new(column.i32()?.iter()),
38 DataType::Date => Box::new(column.date()?.phys.iter()),
39 dtype => {
40 return Err(polars_err!(SchemaMismatch: "Cannot get i32 from column '{column_name}' with dtype : {dtype}"))
41 }
42 };
43
44 Ok(iter)
45}
46
47#[cfg(test)]
48mod tests {
49
50 const ROW_COUNT: usize = 64;
51
52 use crate::*;
53 use itertools::{izip, Itertools};
54 use polars::prelude::*;
55 use rand::{rngs::StdRng, SeedableRng};
56 use shared_test_helpers::*;
57
58 create_test_for_chunked_type!(i32_test, i32, i32, DataType::Int32, ROW_COUNT);
59
60 create_test_for_logical_type!(i32_as_date_test, i32, date, DataType::Date, ROW_COUNT);
61
62 #[test]
63 fn i32_as_time_test() {
64 let mut rng = StdRng::seed_from_u64(0);
65 let height = 64;
66 let dtype = DataType::Time;
67
68 let col = create_column("col", dtype.clone(), false, height, &mut rng);
69 let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
70
71 let col_values = col
72 .as_series()
73 .unwrap()
74 .time()
75 .unwrap()
76 .phys
77 .iter()
78 .map(|v| v.unwrap())
79 .collect_vec();
80
81 let col_opt_values = col_opt.as_series().unwrap().time().unwrap().phys.iter().collect_vec();
82
83 let df = DataFrame::new(vec![col, col_opt]).unwrap();
84
85 let col_iter = col_values.iter();
86 let col_opt_iter = col_opt_values.iter();
87
88 let expected_rows = izip!(col_iter, col_opt_iter)
89 .map(|(&col, &col_opt)| TestRow { col, col_opt })
90 .collect_vec();
91
92 #[derive(Debug, FromDataFrameRow, PartialEq)]
93 struct TestRow {
94 col: i64,
95 col_opt: Option<i64>,
96 }
97
98 let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
99
100 assert_eq!(rows, expected_rows)
101 }
102}