polars_python/interop/arrow/
to_py.rs1use std::ffi::CString;
2
3use arrow::datatypes::ArrowDataType;
4use arrow::ffi;
5use arrow::record_batch::RecordBatch;
6use polars::datatypes::CompatLevel;
7use polars::frame::DataFrame;
8use polars::prelude::{ArrayRef, ArrowField, PlSmallStr, SchemaExt};
9use polars::series::Series;
10use polars_core::utils::arrow;
11use polars_error::PolarsResult;
12use pyo3::ffi::Py_uintptr_t;
13use pyo3::prelude::*;
14use pyo3::types::PyCapsule;
15
16pub(crate) fn to_py_array(
18 array: ArrayRef,
19 field: &ArrowField,
20 pyarrow: &Bound<PyModule>,
21) -> PyResult<PyObject> {
22 let schema = Box::new(ffi::export_field_to_c(field));
23 let array = Box::new(ffi::export_array_to_c(array));
24
25 let schema_ptr: *const ffi::ArrowSchema = &*schema;
26 let array_ptr: *const ffi::ArrowArray = &*array;
27
28 let array = pyarrow.getattr("Array")?.call_method1(
29 "_import_from_c",
30 (array_ptr as Py_uintptr_t, schema_ptr as Py_uintptr_t),
31 )?;
32
33 Ok(array.unbind())
34}
35
36pub(crate) fn to_py_rb(
38 rb: &RecordBatch,
39 py: Python<'_>,
40 pyarrow: &Bound<PyModule>,
41) -> PyResult<PyObject> {
42 let mut arrays = Vec::with_capacity(rb.width());
43
44 for (array, field) in rb.columns().iter().zip(rb.schema().iter_values()) {
45 let array_object = to_py_array(array.clone(), field, pyarrow)?;
46 arrays.push(array_object);
47 }
48
49 let schema = Box::new(ffi::export_field_to_c(&ArrowField {
50 name: PlSmallStr::EMPTY,
51 dtype: ArrowDataType::Struct(rb.schema().iter_values().cloned().collect()),
52 is_nullable: false,
53 metadata: None,
54 }));
55 let schema_ptr: *const ffi::ArrowSchema = &*schema;
56
57 let schema = pyarrow
58 .getattr("Schema")?
59 .call_method1("_import_from_c", (schema_ptr as Py_uintptr_t,))?;
60 let record = pyarrow
61 .getattr("RecordBatch")?
62 .call_method1("from_arrays", (arrays, py.None(), schema))?;
63
64 Ok(record.unbind())
65}
66
67pub(crate) fn series_to_stream<'py>(
70 series: &Series,
71 py: Python<'py>,
72) -> PyResult<Bound<'py, PyCapsule>> {
73 let field = series.field().to_arrow(CompatLevel::newest());
74 let series = series.clone();
75 let iter = Box::new(
76 (0..series.n_chunks()).map(move |i| Ok(series.to_arrow(i, CompatLevel::newest()))),
77 ) as _;
78
79 let stream = ffi::export_iterator(iter, field);
80 let stream_capsule_name = CString::new("arrow_array_stream").unwrap();
81 PyCapsule::new(py, stream, Some(stream_capsule_name))
82}
83
84pub(crate) fn dataframe_to_stream<'py>(
85 df: &DataFrame,
86 py: Python<'py>,
87) -> PyResult<Bound<'py, PyCapsule>> {
88 let iter = Box::new(DataFrameStreamIterator::new(df));
89 let field = iter.field();
90 let stream = ffi::export_iterator(iter, field);
91 let stream_capsule_name = CString::new("arrow_array_stream").unwrap();
92 PyCapsule::new(py, stream, Some(stream_capsule_name))
93}
94
95#[cfg(feature = "c_api")]
96#[pyfunction]
97pub(crate) fn polars_schema_to_pycapsule<'py>(
98 py: Python<'py>,
99 schema: crate::prelude::Wrap<polars::prelude::Schema>,
100 compat_level: crate::prelude::PyCompatLevel,
101) -> PyResult<Bound<'py, PyCapsule>> {
102 let schema: arrow::ffi::ArrowSchema = arrow::ffi::export_field_to_c(&ArrowField::new(
103 PlSmallStr::EMPTY,
104 ArrowDataType::Struct(
105 schema
106 .0
107 .iter_fields()
108 .map(|x| x.to_arrow(compat_level.0))
109 .collect(),
110 ),
111 false,
112 ));
113
114 let capsule_name = CString::new("arrow_schema").unwrap();
115 PyCapsule::new(py, schema, Some(capsule_name))
116}
117
118pub struct DataFrameStreamIterator {
119 columns: Vec<Series>,
120 dtype: ArrowDataType,
121 idx: usize,
122 n_chunks: usize,
123}
124
125impl DataFrameStreamIterator {
126 fn new(df: &DataFrame) -> Self {
127 let schema = df.schema().to_arrow(CompatLevel::newest());
128 let dtype = ArrowDataType::Struct(schema.into_iter_values().collect());
129
130 Self {
131 columns: df
132 .get_columns()
133 .iter()
134 .map(|v| v.as_materialized_series().clone())
135 .collect(),
136 dtype,
137 idx: 0,
138 n_chunks: df.first_col_n_chunks(),
139 }
140 }
141
142 fn field(&self) -> ArrowField {
143 ArrowField::new(PlSmallStr::EMPTY, self.dtype.clone(), false)
144 }
145}
146
147impl Iterator for DataFrameStreamIterator {
148 type Item = PolarsResult<ArrayRef>;
149
150 fn next(&mut self) -> Option<Self::Item> {
151 if self.idx >= self.n_chunks {
152 None
153 } else {
154 let batch_cols = self
156 .columns
157 .iter()
158 .map(|s| s.to_arrow(self.idx, CompatLevel::newest()))
159 .collect::<Vec<_>>();
160 self.idx += 1;
161
162 let array = arrow::array::StructArray::new(
163 self.dtype.clone(),
164 batch_cols[0].len(),
165 batch_cols,
166 None,
167 );
168 Some(Ok(Box::new(array)))
169 }
170 }
171}