1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
use crate::logical_plan::Context;
use crate::physical_plan::state::ExecutionState;
use crate::prelude::*;
use polars_core::frame::groupby::GroupBy;
use polars_core::frame::hash_join::private_left_join_multiple_keys;
use polars_core::prelude::*;
use std::sync::Arc;
pub struct WindowExpr {
pub(crate) group_by: Vec<Arc<dyn PhysicalExpr>>,
pub(crate) apply_column: Arc<String>,
pub(crate) out_name: Option<Arc<String>>,
pub(crate) function: Expr,
}
impl PhysicalExpr for WindowExpr {
fn evaluate(&self, df: &DataFrame, state: &ExecutionState) -> Result<Series> {
let mut key = String::with_capacity(df.width() * 32);
df.get_columns()
.iter()
.for_each(|s| key.push_str(&format!("{}", s.get_data_ptr())));
let groupby_columns = self
.group_by
.iter()
.map(|e| e.evaluate(df, state))
.collect::<Result<Vec<_>>>()?;
groupby_columns.iter().for_each(|e| {
key.push_str(e.name());
});
let mut groups_lock;
loop {
match state.group_tuples.try_lock() {
Ok(lock) => {
groups_lock = lock;
break;
}
Err(_) => {
std::thread::sleep(std::time::Duration::from_millis(1));
}
}
}
let groups = match groups_lock.get_mut(&key) {
Some(groups) => std::mem::take(groups),
None => {
let mut gb = df.groupby_with_series(groupby_columns.clone(), true)?;
std::mem::take(gb.get_groups_mut())
}
};
let mut gb = GroupBy::new(
df,
groupby_columns.clone(),
groups,
Some(vec![&self.apply_column]),
);
let out = match &self.function {
Expr::Function { function, .. } => {
let mut df = gb.agg_list()?;
df.may_apply_at_idx(1, |s| function.call_udf(&mut [s.clone()]))?;
Ok(df)
}
Expr::Agg(agg) => match agg {
AggExpr::Median(_) => gb.median(),
AggExpr::Mean(_) => gb.mean(),
AggExpr::Max(_) => gb.max(),
AggExpr::Min(_) => gb.min(),
AggExpr::Sum(_) => gb.sum(),
AggExpr::First(_) => gb.first(),
AggExpr::Last(_) => gb.last(),
AggExpr::Count(_) => gb.count(),
AggExpr::NUnique(_) => gb.n_unique(),
AggExpr::Quantile { quantile, .. } => gb.quantile(*quantile),
AggExpr::List(_) => gb.agg_list(),
AggExpr::AggGroups(_) => gb.groups(),
AggExpr::Std(_) => gb.std(),
AggExpr::Var(_) => gb.var(),
},
_ => Err(PolarsError::Other(
format!(
"{:?} function not supported in window operation.\
Note that you should use an aggregation",
self.function
)
.into(),
)),
}?;
groups_lock.insert(key.clone(), std::mem::take(gb.get_groups_mut()));
drop(groups_lock);
let out_column = out.select_at_idx(out.width() - 1).unwrap();
let mut join_tuples_lock = state.join_tuples.lock().unwrap();
let opt_join_tuples = match join_tuples_lock.get_mut(&key) {
Some(t) => std::mem::take(t),
None => {
if groupby_columns.len() == 1 {
let right = out.select_at_idx(0).unwrap();
groupby_columns[0].hash_join_left(right)
} else {
let df_right =
DataFrame::new_no_checks(out.get_columns()[..out.width() - 1].to_vec());
let df_left = DataFrame::new_no_checks(groupby_columns);
private_left_join_multiple_keys(&df_left, &df_right)
}
}
};
let mut iter = opt_join_tuples
.iter()
.map(|(_left, right)| right.map(|i| i as usize));
let mut out = unsafe { out_column.take_opt_iter_unchecked(&mut iter) };
join_tuples_lock.insert(key, opt_join_tuples);
if let Some(name) = &self.out_name {
out.rename(name.as_str());
}
Ok(out)
}
fn to_field(&self, input_schema: &Schema) -> Result<Field> {
self.function.to_field(input_schema, Context::Default)
}
}