1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
//! Type agnostic columnar data structure.
pub use crate::prelude::ChunkCompare;
use crate::prelude::*;
mod any_value;
pub mod arithmetic;
mod comparison;
mod from;
pub mod implementations;
mod into;
pub(crate) mod iterator;
pub mod ops;
mod series_trait;
#[cfg(feature = "private")]
pub mod unstable;
use std::borrow::Cow;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use std::sync::Arc;
use ahash::RandomState;
use arrow::compute::aggregate::estimated_bytes_size;
use arrow::offset::Offsets;
pub use from::*;
pub use iterator::{SeriesIter, SeriesPhysIter};
use num_traits::NumCast;
use rayon::prelude::*;
pub use series_trait::{IsSorted, *};
#[cfg(feature = "rank")]
use crate::prelude::unique::rank::rank;
#[cfg(feature = "zip_with")]
use crate::series::arithmetic::coerce_lhs_rhs;
use crate::utils::{_split_offsets, split_ca, split_series, Wrap};
use crate::POOL;
/// # Series
/// The columnar data type for a DataFrame.
///
/// Most of the available functions are defined in the [SeriesTrait trait](crate::series::SeriesTrait).
///
/// The `Series` struct consists
/// of typed [ChunkedArray](../chunked_array/struct.ChunkedArray.html)'s. To quickly cast
/// a `Series` to a `ChunkedArray` you can call the method with the name of the type:
///
/// ```
/// # use polars_core::prelude::*;
/// let s: Series = [1, 2, 3].iter().collect();
/// // Quickly obtain the ChunkedArray wrapped by the Series.
/// let chunked_array = s.i32().unwrap();
/// ```
///
/// ## Arithmetic
///
/// You can do standard arithmetic on series.
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("a", [1 , 2, 3]);
/// let out_add = &s + &s;
/// let out_sub = &s - &s;
/// let out_div = &s / &s;
/// let out_mul = &s * &s;
/// ```
///
/// Or with series and numbers.
///
/// ```
/// # use polars_core::prelude::*;
/// let s: Series = (1..3).collect();
/// let out_add_one = &s + 1;
/// let out_multiply = &s * 10;
///
/// // Could not overload left hand side operator.
/// let out_divide = 1.div(&s);
/// let out_add = 1.add(&s);
/// let out_subtract = 1.sub(&s);
/// let out_multiply = 1.mul(&s);
/// ```
///
/// ## Comparison
/// You can obtain boolean mask by comparing series.
///
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("dollars", &[1, 2, 3]);
/// let mask = s.equal(1).unwrap();
/// let valid = [true, false, false].iter();
/// assert!(mask
/// .into_iter()
/// .map(|opt_bool| opt_bool.unwrap()) // option, because series can be null
/// .zip(valid)
/// .all(|(a, b)| a == *b))
/// ```
///
/// See all the comparison operators in the [CmpOps trait](../chunked_array/comparison/trait.CmpOps.html)
///
/// ## Iterators
/// The Series variants contain differently typed [ChunkedArray's](../chunked_array/struct.ChunkedArray.html).
/// These structs can be turned into iterators, making it possible to use any function/ closure you want
/// on a Series.
///
/// These iterators return an `Option<T>` because the values of a series may be null.
///
/// ```
/// use polars_core::prelude::*;
/// let pi = 3.14;
/// let s = Series::new("angle", [2f32 * pi, pi, 1.5 * pi].as_ref());
/// let s_cos: Series = s.f32()
/// .expect("series was not an f32 dtype")
/// .into_iter()
/// .map(|opt_angle| opt_angle.map(|angle| angle.cos()))
/// .collect();
/// ```
///
/// ## Creation
/// Series can be create from different data structures. Below we'll show a few ways we can create
/// a Series object.
///
/// ```
/// # use polars_core::prelude::*;
/// // Series can be created from Vec's, slices and arrays
/// Series::new("boolean series", &[true, false, true]);
/// Series::new("int series", &[1, 2, 3]);
/// // And can be nullable
/// Series::new("got nulls", &[Some(1), None, Some(2)]);
///
/// // Series can also be collected from iterators
/// let from_iter: Series = (0..10)
/// .into_iter()
/// .collect();
///
/// ```
#[derive(Clone)]
#[must_use]
pub struct Series(pub Arc<dyn SeriesTrait>);
impl PartialEq for Wrap<Series> {
fn eq(&self, other: &Self) -> bool {
self.0.series_equal_missing(other)
}
}
impl Eq for Wrap<Series> {}
impl Hash for Wrap<Series> {
fn hash<H: Hasher>(&self, state: &mut H) {
let rs = RandomState::with_seeds(0, 0, 0, 0);
let mut h = vec![];
self.0.vec_hash(rs, &mut h).unwrap();
let h = UInt64Chunked::from_vec("", h).sum();
h.hash(state)
}
}
impl Series {
/// Create a new empty Series
pub fn new_empty(name: &str, dtype: &DataType) -> Series {
Series::full_null(name, 0, dtype)
}
pub fn clear(&self) -> Series {
// only the inner of objects know their type
// so use this hack
#[cfg(feature = "object")]
if matches!(self.dtype(), DataType::Object(_)) {
return if self.is_empty() {
self.clone()
} else {
let av = self.get(0).unwrap();
Series::new(self.name(), [av]).slice(0, 0)
};
}
Series::new_empty(self.name(), self.dtype())
}
#[doc(hidden)]
#[cfg(feature = "private")]
pub fn _get_inner_mut(&mut self) -> &mut dyn SeriesTrait {
if Arc::weak_count(&self.0) + Arc::strong_count(&self.0) != 1 {
self.0 = self.0.clone_inner();
}
Arc::get_mut(&mut self.0).expect("implementation error")
}
/// # Safety
/// The caller must ensure the length and the data types of `ArrayRef` does not change.
pub unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
#[allow(unused_mut)]
let mut ca = self._get_inner_mut();
let chunks = ca.chunks() as *const Vec<ArrayRef> as *mut Vec<ArrayRef>;
// Safety
// ca is the owner of `chunks` and this we do not break aliasing rules
&mut *chunks
}
pub fn set_sorted_flag(&mut self, sorted: IsSorted) {
let inner = self._get_inner_mut();
inner._set_sorted_flag(sorted)
}
pub fn into_frame(self) -> DataFrame {
DataFrame::new_no_checks(vec![self])
}
/// Rename series.
pub fn rename(&mut self, name: &str) -> &mut Series {
self._get_inner_mut().rename(name);
self
}
/// Shrink the capacity of this array to fit its length.
pub fn shrink_to_fit(&mut self) {
self._get_inner_mut().shrink_to_fit()
}
/// Append in place. This is done by adding the chunks of `other` to this [`Series`].
///
/// See [`ChunkedArray::append`] and [`ChunkedArray::extend`].
pub fn append(&mut self, other: &Series) -> PolarsResult<&mut Self> {
self._get_inner_mut().append(other)?;
Ok(self)
}
/// Extend the memory backed by this array with the values from `other`.
///
/// See [`ChunkedArray::extend`] and [`ChunkedArray::append`].
pub fn extend(&mut self, other: &Series) -> PolarsResult<&mut Self> {
self._get_inner_mut().extend(other)?;
Ok(self)
}
pub fn sort(&self, descending: bool) -> Self {
self.sort_with(SortOptions {
descending,
..Default::default()
})
}
/// Only implemented for numeric types
pub fn as_single_ptr(&mut self) -> PolarsResult<usize> {
self._get_inner_mut().as_single_ptr()
}
/// Cast `[Series]` to another `[DataType]`
pub fn cast(&self, dtype: &DataType) -> PolarsResult<Self> {
// best leave as is.
if matches!(dtype, DataType::Unknown) {
return Ok(self.clone());
}
match self.0.cast(dtype) {
Ok(out) => Ok(out),
Err(err) => {
let len = self.len();
if self.null_count() == len {
Ok(Series::full_null(self.name(), len, dtype))
} else {
Err(err)
}
}
}
}
/// Cast from physical to logical types without any checks on the validity of the cast.
///
/// # Safety
/// This can lead to invalid memory access in downstream code.
pub unsafe fn cast_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
match self.dtype() {
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => {
let ca = self.struct_().unwrap();
ca.cast_unchecked(dtype)
}
DataType::List(_) => {
let ca = self.list().unwrap();
ca.cast_unchecked(dtype)
}
dt if dt.is_numeric() => {
with_match_physical_numeric_polars_type!(dt, |$T| {
let ca: &ChunkedArray<$T> = self.as_ref().as_ref().as_ref();
ca.cast_unchecked(dtype)
})
}
DataType::Binary => {
let ca = self.binary().unwrap();
ca.cast_unchecked(dtype)
}
_ => self.cast(dtype),
}
}
/// Compute the sum of all values in this Series.
/// Returns `Some(0)` if the array is empty, and `None` if the array only
/// contains null values.
///
/// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
/// first cast to `Int64` to prevent overflow issues.
///
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("days", &[1, 2, 3]);
/// assert_eq!(s.sum(), Some(6));
/// ```
pub fn sum<T>(&self) -> Option<T>
where
T: NumCast,
{
self.sum_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|s| s.f64().unwrap().get(0).and_then(T::from))
}
/// Returns the minimum value in the array, according to the natural order.
/// Returns an option because the array is nullable.
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("days", [1, 2, 3].as_ref());
/// assert_eq!(s.min(), Some(1));
/// ```
pub fn min<T>(&self) -> Option<T>
where
T: NumCast,
{
self.min_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|s| s.f64().unwrap().get(0).and_then(T::from))
}
/// Returns the maximum value in the array, according to the natural order.
/// Returns an option because the array is nullable.
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("days", [1, 2, 3].as_ref());
/// assert_eq!(s.max(), Some(3));
/// ```
pub fn max<T>(&self) -> Option<T>
where
T: NumCast,
{
self.max_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|s| s.f64().unwrap().get(0).and_then(T::from))
}
/// Explode a list Series. This expands every item to a new row..
pub fn explode(&self) -> PolarsResult<Series> {
match self.dtype() {
DataType::List(_) => self.list().unwrap().explode(),
_ => Ok(self.clone()),
}
}
/// Check if float value is NaN (note this is different than missing/ null)
pub fn is_nan(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_nan()),
DataType::Float64 => Ok(self.f64().unwrap().is_nan()),
_ => polars_bail!(opq = is_nan, self.dtype()),
}
}
/// Check if float value is NaN (note this is different than missing/ null)
pub fn is_not_nan(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_not_nan()),
DataType::Float64 => Ok(self.f64().unwrap().is_not_nan()),
_ => polars_bail!(opq = is_not_nan, self.dtype()),
}
}
/// Check if float value is finite
pub fn is_finite(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_finite()),
DataType::Float64 => Ok(self.f64().unwrap().is_finite()),
_ => polars_bail!(opq = is_finite, self.dtype()),
}
}
/// Check if float value is infinite
pub fn is_infinite(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_infinite()),
DataType::Float64 => Ok(self.f64().unwrap().is_infinite()),
_ => polars_bail!(opq = is_infinite, self.dtype()),
}
}
/// Create a new ChunkedArray with values from self where the mask evaluates `true` and values
/// from `other` where the mask evaluates `false`
#[cfg(feature = "zip_with")]
pub fn zip_with(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
let (lhs, rhs) = coerce_lhs_rhs(self, other)?;
lhs.zip_with_same_type(mask, rhs.as_ref())
}
/// Cast a datelike Series to their physical representation.
/// Primitives remain unchanged
///
/// * Date -> Int32
/// * Datetime-> Int64
/// * Time -> Int64
/// * Categorical -> UInt32
/// * List(inner) -> List(physical of inner)
///
pub fn to_physical_repr(&self) -> Cow<Series> {
use DataType::*;
match self.dtype() {
Date => Cow::Owned(self.cast(&Int32).unwrap()),
Datetime(_, _) | Duration(_) | Time => Cow::Owned(self.cast(&Int64).unwrap()),
#[cfg(feature = "dtype-categorical")]
Categorical(_) => Cow::Owned(self.cast(&UInt32).unwrap()),
List(inner) => Cow::Owned(self.cast(&List(Box::new(inner.to_physical()))).unwrap()),
_ => Cow::Borrowed(self),
}
}
fn finish_take_threaded(&self, s: Vec<Series>, rechunk: bool) -> Series {
let s = s
.into_iter()
.reduce(|mut s, s1| {
s.append(&s1).unwrap();
s
})
.unwrap();
if rechunk {
s.rechunk()
} else {
s
}
}
// take a function pointer to reduce bloat
fn threaded_op(
&self,
rechunk: bool,
len: usize,
func: &(dyn Fn(usize, usize) -> PolarsResult<Series> + Send + Sync),
) -> PolarsResult<Series> {
let n_threads = POOL.current_num_threads();
let offsets = _split_offsets(len, n_threads);
let series: PolarsResult<Vec<_>> = POOL.install(|| {
offsets
.into_par_iter()
.map(|(offset, len)| func(offset, len))
.collect()
});
Ok(self.finish_take_threaded(series?, rechunk))
}
/// Take by index if ChunkedArray contains a single chunk.
///
/// # Safety
/// This doesn't check any bounds. Null validity is checked.
pub unsafe fn take_unchecked_from_slice(&self, idx: &[IdxSize]) -> PolarsResult<Series> {
let idx = IdxCa::mmap_slice("", idx);
self.take_unchecked(&idx)
}
/// Take by index if ChunkedArray contains a single chunk.
///
/// # Safety
/// This doesn't check any bounds. Null validity is checked.
pub unsafe fn take_unchecked_threaded(
&self,
idx: &IdxCa,
rechunk: bool,
) -> PolarsResult<Series> {
self.threaded_op(rechunk, idx.len(), &|offset, len| {
let idx = idx.slice(offset as i64, len);
self.take_unchecked(&idx)
})
}
/// # Safety
/// This doesn't check any bounds. Null validity is checked.
#[cfg(feature = "chunked_ids")]
pub(crate) unsafe fn _take_chunked_unchecked_threaded(
&self,
chunk_ids: &[ChunkId],
sorted: IsSorted,
rechunk: bool,
) -> Series {
self.threaded_op(rechunk, chunk_ids.len(), &|offset, len| {
let chunk_ids = &chunk_ids[offset..offset + len];
Ok(self._take_chunked_unchecked(chunk_ids, sorted))
})
.unwrap()
}
/// # Safety
/// This doesn't check any bounds. Null validity is checked.
#[cfg(feature = "chunked_ids")]
pub(crate) unsafe fn _take_opt_chunked_unchecked_threaded(
&self,
chunk_ids: &[Option<ChunkId>],
rechunk: bool,
) -> Series {
self.threaded_op(rechunk, chunk_ids.len(), &|offset, len| {
let chunk_ids = &chunk_ids[offset..offset + len];
Ok(self._take_opt_chunked_unchecked(chunk_ids))
})
.unwrap()
}
/// Take by index. This operation is clone.
///
/// # Notes
/// Out of bounds access doesn't Error but will return a Null value
pub fn take_threaded(&self, idx: &IdxCa, rechunk: bool) -> PolarsResult<Series> {
self.threaded_op(rechunk, idx.len(), &|offset, len| {
let idx = idx.slice(offset as i64, len);
self.take(&idx)
})
}
/// Filter by boolean mask. This operation clones data.
pub fn filter_threaded(&self, filter: &BooleanChunked, rechunk: bool) -> PolarsResult<Series> {
// this would fail if there is a broadcasting filter.
// because we cannot split that filter over threads
// besides they are a no-op, so we do the standard filter.
if filter.len() == 1 {
return self.filter(filter);
}
let n_threads = POOL.current_num_threads();
let filters = split_ca(filter, n_threads).unwrap();
let series = split_series(self, n_threads).unwrap();
let series: PolarsResult<Vec<_>> = POOL.install(|| {
filters
.par_iter()
.zip(series)
.map(|(filter, s)| s.filter(filter))
.collect()
});
Ok(self.finish_take_threaded(series?, rechunk))
}
#[cfg(feature = "dot_product")]
pub fn dot(&self, other: &Series) -> Option<f64> {
(self * other).sum::<f64>()
}
/// Get the sum of the Series as a new Series of length 1.
/// Returns a Series with a single zeroed entry if self is an empty numeric series.
///
/// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
/// first cast to `Int64` to prevent overflow issues.
pub fn sum_as_series(&self) -> Series {
use DataType::*;
if self.is_empty()
&& (self.dtype().is_numeric() || matches!(self.dtype(), DataType::Boolean))
{
return Series::new(self.name(), [0])
.cast(self.dtype())
.unwrap()
.sum_as_series();
}
match self.dtype() {
Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_as_series(),
_ => self._sum_as_series(),
}
}
/// Get an array with the cumulative max computed at every element
pub fn cummax(&self, _reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
self._cummax(_reverse)
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}
/// Get an array with the cumulative min computed at every element
pub fn cummin(&self, _reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
self._cummin(_reverse)
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}
/// Get an array with the cumulative sum computed at every element
///
/// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
/// first cast to `Int64` to prevent overflow issues.
#[allow(unused_variables)]
pub fn cumsum(&self, reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::UInt32).unwrap().cumsum(reverse),
Int8 | UInt8 | Int16 | UInt16 => {
let s = self.cast(&Int64).unwrap();
s.cumsum(reverse)
}
Int32 => {
let ca = self.i32().unwrap();
ca.cumsum(reverse).into_series()
}
UInt32 => {
let ca = self.u32().unwrap();
ca.cumsum(reverse).into_series()
}
UInt64 => {
let ca = self.u64().unwrap();
ca.cumsum(reverse).into_series()
}
Int64 => {
let ca = self.i64().unwrap();
ca.cumsum(reverse).into_series()
}
Float32 => {
let ca = self.f32().unwrap();
ca.cumsum(reverse).into_series()
}
Float64 => {
let ca = self.f64().unwrap();
ca.cumsum(reverse).into_series()
}
#[cfg(feature = "dtype-duration")]
Duration(tu) => {
let ca = self.to_physical_repr();
let ca = ca.i64().unwrap();
ca.cumsum(reverse).cast(&Duration(*tu)).unwrap()
}
dt => panic!("cumsum not supported for dtype: {dt:?}"),
}
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}
/// Get an array with the cumulative product computed at every element
///
/// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16, Int32, UInt32}` the `Series` is
/// first cast to `Int64` to prevent overflow issues.
#[allow(unused_variables)]
pub fn cumprod(&self, reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::Int64).unwrap().cumprod(reverse),
Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
let s = self.cast(&Int64).unwrap();
s.cumprod(reverse)
}
Int64 => {
let ca = self.i64().unwrap();
ca.cumprod(reverse).into_series()
}
UInt64 => {
let ca = self.u64().unwrap();
ca.cumprod(reverse).into_series()
}
Float32 => {
let ca = self.f32().unwrap();
ca.cumprod(reverse).into_series()
}
Float64 => {
let ca = self.f64().unwrap();
ca.cumprod(reverse).into_series()
}
dt => panic!("cumprod not supported for dtype: {dt:?}"),
}
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}
/// Get the product of an array.
///
/// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
/// first cast to `Int64` to prevent overflow issues.
pub fn product(&self) -> Series {
#[cfg(feature = "product")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::Int64).unwrap().product(),
Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
let s = self.cast(&Int64).unwrap();
s.product()
}
Int64 => {
let ca = self.i64().unwrap();
ca.prod_as_series()
}
UInt64 => {
let ca = self.u64().unwrap();
ca.prod_as_series()
}
Float32 => {
let ca = self.f32().unwrap();
ca.prod_as_series()
}
Float64 => {
let ca = self.f64().unwrap();
ca.prod_as_series()
}
dt => panic!("cumprod not supported for dtype: {dt:?}"),
}
}
#[cfg(not(feature = "product"))]
{
panic!("activate 'product' feature")
}
}
#[cfg(feature = "rank")]
pub fn rank(&self, options: RankOptions, seed: Option<u64>) -> Series {
rank(self, options.method, options.descending, seed)
}
/// Cast throws an error if conversion had overflows
pub fn strict_cast(&self, dtype: &DataType) -> PolarsResult<Series> {
let null_count = self.null_count();
let len = self.len();
match self.dtype() {
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => {}
_ => {
if null_count == len {
return Ok(Series::full_null(self.name(), len, dtype));
}
}
}
let s = self.0.cast(dtype)?;
if null_count != s.null_count() {
let failure_mask = !self.is_null() & s.is_null();
let failures = self.filter_threaded(&failure_mask, false)?.unique()?;
polars_bail!(
ComputeError:
"strict conversion from `{}` to `{}` failed for value(s) {}; \
if you were trying to cast Utf8 to temporal dtypes, consider using `strptime`",
self.dtype(), dtype, failures.fmt_list(),
);
} else {
Ok(s)
}
}
#[cfg(feature = "dtype-time")]
pub(crate) fn into_time(self) -> Series {
#[cfg(not(feature = "dtype-time"))]
{
panic!("activate feature dtype-time")
}
match self.dtype() {
DataType::Int64 => self.i64().unwrap().clone().into_time().into_series(),
DataType::Time => self
.time()
.unwrap()
.as_ref()
.clone()
.into_time()
.into_series(),
dt => panic!("date not implemented for {dt:?}"),
}
}
pub(crate) fn into_date(self) -> Series {
#[cfg(not(feature = "dtype-date"))]
{
panic!("activate feature dtype-date")
}
#[cfg(feature = "dtype-date")]
match self.dtype() {
DataType::Int32 => self.i32().unwrap().clone().into_date().into_series(),
DataType::Date => self
.date()
.unwrap()
.as_ref()
.clone()
.into_date()
.into_series(),
dt => panic!("date not implemented for {dt:?}"),
}
}
pub(crate) fn into_datetime(self, timeunit: TimeUnit, tz: Option<TimeZone>) -> Series {
#[cfg(not(feature = "dtype-datetime"))]
{
panic!("activate feature dtype-datetime")
}
#[cfg(feature = "dtype-datetime")]
match self.dtype() {
DataType::Int64 => self
.i64()
.unwrap()
.clone()
.into_datetime(timeunit, tz)
.into_series(),
DataType::Datetime(_, _) => self
.datetime()
.unwrap()
.as_ref()
.clone()
.into_datetime(timeunit, tz)
.into_series(),
dt => panic!("into_datetime not implemented for {dt:?}"),
}
}
pub(crate) fn into_duration(self, timeunit: TimeUnit) -> Series {
#[cfg(not(feature = "dtype-duration"))]
{
panic!("activate feature dtype-duration")
}
#[cfg(feature = "dtype-duration")]
match self.dtype() {
DataType::Int64 => self
.i64()
.unwrap()
.clone()
.into_duration(timeunit)
.into_series(),
DataType::Duration(_) => self
.duration()
.unwrap()
.as_ref()
.clone()
.into_duration(timeunit)
.into_series(),
dt => panic!("into_duration not implemented for {dt:?}"),
}
}
#[cfg(feature = "abs")]
/// convert numerical values to their absolute value
pub fn abs(&self) -> PolarsResult<Series> {
let a = self.to_physical_repr();
use DataType::*;
let out = match a.dtype() {
#[cfg(feature = "dtype-i8")]
Int8 => a.i8().unwrap().abs().into_series(),
#[cfg(feature = "dtype-i16")]
Int16 => a.i16().unwrap().abs().into_series(),
Int32 => a.i32().unwrap().abs().into_series(),
Int64 => a.i64().unwrap().abs().into_series(),
UInt8 | UInt16 | UInt32 | UInt64 => self.clone(),
Float32 => a.f32().unwrap().abs().into_series(),
Float64 => a.f64().unwrap().abs().into_series(),
dt => polars_bail!(opq = abs, dt),
};
out.cast(self.dtype())
}
#[cfg(feature = "private")]
// used for formatting
pub fn str_value(&self, index: usize) -> PolarsResult<Cow<str>> {
let out = match self.0.get(index)? {
AnyValue::Utf8(s) => Cow::Borrowed(s),
AnyValue::Null => Cow::Borrowed("null"),
#[cfg(feature = "dtype-categorical")]
AnyValue::Categorical(idx, rev, arr) => {
if arr.is_null() {
Cow::Borrowed(rev.get(idx))
} else {
unsafe { Cow::Borrowed(arr.deref_unchecked().value(idx as usize)) }
}
}
av => Cow::Owned(format!("{av}")),
};
Ok(out)
}
/// Get the head of the Series.
pub fn head(&self, length: Option<usize>) -> Series {
match length {
Some(len) => self.slice(0, std::cmp::min(len, self.len())),
None => self.slice(0, std::cmp::min(10, self.len())),
}
}
/// Get the tail of the Series.
pub fn tail(&self, length: Option<usize>) -> Series {
let len = match length {
Some(len) => std::cmp::min(len, self.len()),
None => std::cmp::min(10, self.len()),
};
self.slice(-(len as i64), len)
}
pub fn mean_as_series(&self) -> Series {
match self.dtype() {
DataType::Float32 => {
let val = &[self.mean().map(|m| m as f32)];
Series::new(self.name(), val)
}
dt if dt.is_numeric() || matches!(dt, DataType::Boolean) => {
let val = &[self.mean()];
Series::new(self.name(), val)
}
dt @ DataType::Duration(_) => {
Series::new(self.name(), &[self.mean().map(|v| v as i64)])
.cast(dt)
.unwrap()
}
_ => return Series::full_null(self.name(), 1, self.dtype()),
}
}
/// Compute the unique elements, but maintain order. This requires more work
/// than a naive [`Series::unique`](SeriesTrait::unique).
pub fn unique_stable(&self) -> PolarsResult<Series> {
let idx = self.arg_unique()?;
// Safety:
// Indices are in bounds.
unsafe { self.take_unchecked(&idx) }
}
pub fn idx(&self) -> PolarsResult<&IdxCa> {
#[cfg(feature = "bigidx")]
{
self.u64()
}
#[cfg(not(feature = "bigidx"))]
{
self.u32()
}
}
/// Returns an estimation of the total (heap) allocated size of the `Series` in bytes.
///
/// # Implementation
/// This estimation is the sum of the size of its buffers, validity, including nested arrays.
/// Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the
/// sum of the sizes computed from this function. In particular, [`StructArray`]'s size is an upper bound.
///
/// When an array is sliced, its allocated size remains constant because the buffer unchanged.
/// However, this function will yield a smaller number. This is because this function returns
/// the visible size of the buffer, not its total capacity.
///
/// FFI buffers are included in this estimation.
pub fn estimated_size(&self) -> usize {
#[allow(unused_mut)]
let mut size = self
.chunks()
.iter()
.map(|arr| estimated_bytes_size(&**arr))
.sum();
match self.dtype() {
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(Some(rv)) => match &**rv {
RevMapping::Local(arr) => size += estimated_bytes_size(arr),
RevMapping::Global(map, arr, _) => {
size +=
map.capacity() * std::mem::size_of::<u32>() * 2 + estimated_bytes_size(arr);
}
},
_ => {}
}
size
}
/// Packs every element into a list
pub fn as_list(&self) -> ListChunked {
let s = self.rechunk();
let values = s.to_arrow(0);
let offsets = (0i64..(s.len() as i64 + 1)).collect::<Vec<_>>();
let offsets = unsafe { Offsets::new_unchecked(offsets) };
let new_arr = LargeListArray::new(
DataType::List(Box::new(s.dtype().clone())).to_arrow(),
offsets.into(),
values,
None,
);
unsafe { ListChunked::from_chunks(s.name(), vec![Box::new(new_arr)]) }
}
}
impl Deref for Series {
type Target = dyn SeriesTrait;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
impl<'a> AsRef<(dyn SeriesTrait + 'a)> for Series {
fn as_ref(&self) -> &(dyn SeriesTrait + 'a) {
self.0.as_ref()
}
}
impl Default for Series {
fn default() -> Self {
Int64Chunked::default().into_series()
}
}
impl<'a, T> AsRef<ChunkedArray<T>> for dyn SeriesTrait + 'a
where
T: 'static + PolarsDataType,
{
fn as_ref(&self) -> &ChunkedArray<T> {
match T::get_dtype() {
#[cfg(feature = "dtype-decimal")]
DataType::Decimal(None, None) => panic!("impl error"),
_ => {
if &T::get_dtype() == self.dtype() ||
// needed because we want to get ref of List no matter what the inner type is.
(matches!(T::get_dtype(), DataType::List(_)) && matches!(self.dtype(), DataType::List(_)))
{
unsafe { &*(self as *const dyn SeriesTrait as *const ChunkedArray<T>) }
} else {
panic!(
"implementation error, cannot get ref {:?} from {:?}",
T::get_dtype(),
self.dtype()
);
}
}
}
}
}
impl<'a, T> AsMut<ChunkedArray<T>> for dyn SeriesTrait + 'a
where
T: 'static + PolarsDataType,
{
fn as_mut(&mut self) -> &mut ChunkedArray<T> {
if &T::get_dtype() == self.dtype() ||
// needed because we want to get ref of List no matter what the inner type is.
(matches!(T::get_dtype(), DataType::List(_)) && matches!(self.dtype(), DataType::List(_)))
{
unsafe { &mut *(self as *mut dyn SeriesTrait as *mut ChunkedArray<T>) }
} else {
panic!(
"implementation error, cannot get ref {:?} from {:?}",
T::get_dtype(),
self.dtype()
)
}
}
}
#[cfg(test)]
mod test {
use std::convert::TryFrom;
use crate::prelude::*;
use crate::series::*;
#[test]
fn cast() {
let ar = UInt32Chunked::new("a", &[1, 2]);
let s = ar.into_series();
let s2 = s.cast(&DataType::Int64).unwrap();
assert!(s2.i64().is_ok());
let s2 = s.cast(&DataType::Float32).unwrap();
assert!(s2.f32().is_ok());
}
#[test]
fn new_series() {
let _ = Series::new("boolean series", &vec![true, false, true]);
let _ = Series::new("int series", &[1, 2, 3]);
let ca = Int32Chunked::new("a", &[1, 2, 3]);
let _ = ca.into_series();
}
#[test]
#[cfg(feature = "dtype-struct")]
fn new_series_from_empty_structs() {
let dtype = DataType::Struct(vec![]);
let empties = vec![AnyValue::StructOwned(Box::new((vec![], vec![]))); 3];
let s = Series::from_any_values_and_dtype("", &empties, &dtype, false).unwrap();
assert_eq!(s.len(), 3);
}
#[test]
fn new_series_from_arrow_primitive_array() {
let array = UInt32Array::from_slice([1, 2, 3, 4, 5]);
let array_ref: ArrayRef = Box::new(array);
let _ = Series::try_from(("foo", array_ref)).unwrap();
}
#[test]
fn series_append() {
let mut s1 = Series::new("a", &[1, 2]);
let s2 = Series::new("b", &[3]);
s1.append(&s2).unwrap();
assert_eq!(s1.len(), 3);
// add wrong type
let s2 = Series::new("b", &[3.0]);
assert!(s1.append(&s2).is_err())
}
#[test]
fn series_slice_works() {
let series = Series::new("a", &[1i64, 2, 3, 4, 5]);
let slice_1 = series.slice(-3, 3);
let slice_2 = series.slice(-5, 5);
let slice_3 = series.slice(0, 5);
assert_eq!(slice_1.get(0).unwrap(), AnyValue::Int64(3));
assert_eq!(slice_2.get(0).unwrap(), AnyValue::Int64(1));
assert_eq!(slice_3.get(0).unwrap(), AnyValue::Int64(1));
}
#[test]
fn out_of_range_slice_does_not_panic() {
let series = Series::new("a", &[1i64, 2, 3, 4, 5]);
let _ = series.slice(-3, 4);
let _ = series.slice(-6, 2);
let _ = series.slice(4, 2);
}
#[test]
#[cfg(feature = "round_series")]
fn test_round_series() {
let series = Series::new("a", &[1.003, 2.23222, 3.4352]);
let out = series.round(2).unwrap();
let ca = out.f64().unwrap();
assert_eq!(ca.get(0), Some(1.0));
}
}