1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
use arrow::compute::concatenate::concatenate;
use arrow::Either;
use crate::prelude::*;
use crate::series::IsSorted;
fn extend_immutable(immutable: &dyn Array, chunks: &mut Vec<ArrayRef>, other_chunks: &[ArrayRef]) {
let out = if chunks.len() == 1 {
concatenate(&[immutable, &*other_chunks[0]]).unwrap()
} else {
let mut arrays = Vec::with_capacity(other_chunks.len() + 1);
arrays.push(immutable);
arrays.extend(other_chunks.iter().map(|a| &**a));
concatenate(&arrays).unwrap()
};
chunks.push(out);
}
impl<T> ChunkedArray<T>
where
T: PolarsNumericType,
{
/// Extend the memory backed by this array with the values from `other`.
///
/// Different from [`ChunkedArray::append`] which adds chunks to this [`ChunkedArray`] `extend`
/// appends the data from `other` to the underlying `PrimitiveArray` and thus may cause a reallocation.
///
/// However if this does not cause a reallocation, the resulting data structure will not have any extra chunks
/// and thus will yield faster queries.
///
/// Prefer `extend` over `append` when you want to do a query after a single append. For instance during
/// online operations where you add `n` rows and rerun a query.
///
/// Prefer `append` over `extend` when you want to append many times before doing a query. For instance
/// when you read in multiple files and when to store them in a single `DataFrame`.
/// In the latter case finish the sequence of `append` operations with a [`rechunk`](Self::rechunk).
pub fn extend(&mut self, other: &Self) {
// all to a single chunk
if self.chunks.len() > 1 {
self.append(other);
*self = self.rechunk();
return;
}
// Depending on the state of the underlying arrow array we
// might be able to get a `MutablePrimitiveArray`
//
// This is only possible if the reference count of the array and its buffers are 1
// So the logic below is needed to keep the reference count 1 if it is
// First we must obtain an owned version of the array
let arr = self.downcast_iter().next().unwrap();
// increments 1
let arr = arr.clone();
// now we drop our owned ArrayRefs so that
// decrements 1
{
self.chunks.clear();
}
use Either::*;
if arr.values().is_sliced() {
extend_immutable(&arr, &mut self.chunks, &other.chunks);
} else {
match arr.into_mut() {
Left(immutable) => {
extend_immutable(&immutable, &mut self.chunks, &other.chunks);
}
Right(mut mutable) => {
for arr in other.downcast_iter() {
match arr.null_count() {
0 => mutable.extend_from_slice(arr.values()),
_ => mutable.extend_trusted_len(arr.into_iter()),
}
}
let arr: PrimitiveArray<T::Native> = mutable.into();
self.chunks.push(Box::new(arr) as ArrayRef)
}
}
}
self.compute_len();
self.set_sorted_flag(IsSorted::Not);
}
}
#[doc(hidden)]
impl Utf8Chunked {
pub fn extend(&mut self, other: &Self) {
if self.chunks.len() > 1 {
self.append(other);
*self = self.rechunk();
return;
}
let arr = self.downcast_iter().next().unwrap();
// increments 1
let arr = arr.clone();
// now we drop our owned ArrayRefs so that
// decrements 1
{
self.chunks.clear();
}
use Either::*;
match arr.into_mut() {
Left(immutable) => {
extend_immutable(&immutable, &mut self.chunks, &other.chunks);
}
Right(mut mutable) => {
for arr in other.downcast_iter() {
mutable.extend_trusted_len(arr.into_iter())
}
let arr: Utf8Array<i64> = mutable.into();
self.chunks.push(Box::new(arr) as ArrayRef)
}
}
self.compute_len();
self.set_sorted_flag(IsSorted::Not);
}
}
#[doc(hidden)]
impl BinaryChunked {
pub fn extend(&mut self, other: &Self) {
if self.chunks.len() > 1 {
self.append(other);
*self = self.rechunk();
return;
}
let arr = self.downcast_iter().next().unwrap();
// increments 1
let arr = arr.clone();
// now we drop our owned ArrayRefs so that
// decrements 1
{
self.chunks.clear();
}
use Either::*;
match arr.into_mut() {
Left(immutable) => {
extend_immutable(&immutable, &mut self.chunks, &other.chunks);
}
Right(mut mutable) => {
for arr in other.downcast_iter() {
mutable.extend_trusted_len(arr.into_iter())
}
let arr: BinaryArray<i64> = mutable.into();
self.chunks.push(Box::new(arr) as ArrayRef)
}
}
self.compute_len();
}
}
#[doc(hidden)]
impl BooleanChunked {
pub fn extend(&mut self, other: &Self) {
// make sure that we are a single chunk already
if self.chunks.len() > 1 {
self.append(other);
*self = self.rechunk();
return;
}
let arr = self.downcast_iter().next().unwrap();
// increments 1
let arr = arr.clone();
// now we drop our owned ArrayRefs so that
// decrements 1
{
self.chunks.clear();
}
use Either::*;
match arr.into_mut() {
Left(immutable) => {
extend_immutable(&immutable, &mut self.chunks, &other.chunks);
}
Right(mut mutable) => {
for arr in other.downcast_iter() {
mutable.extend_trusted_len(arr.into_iter())
}
let arr: BooleanArray = mutable.into();
self.chunks.push(Box::new(arr) as ArrayRef)
}
}
self.compute_len();
self.set_sorted_flag(IsSorted::Not);
}
}
#[doc(hidden)]
impl ListChunked {
pub fn extend(&mut self, other: &Self) -> PolarsResult<()> {
// TODO! properly implement mutation
// this is harder because we don't know the inner type of the list
self.set_sorted_flag(IsSorted::Not);
self.append(other)
}
}
#[cfg(feature = "dtype-array")]
#[doc(hidden)]
impl ArrayChunked {
pub fn extend(&mut self, other: &Self) -> PolarsResult<()> {
// TODO! properly implement mutation
// this is harder because we don't know the inner type of the list
self.set_sorted_flag(IsSorted::Not);
self.append(other)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[allow(clippy::redundant_clone)]
fn test_extend_primitive() {
// create a vec with overcapacity, so that we do not trigger a realloc
// this allows us to test if the mutation was successful
let mut values = Vec::with_capacity(32);
values.extend_from_slice(&[1, 2, 3]);
let mut ca = Int32Chunked::from_vec("a", values);
let location = ca.cont_slice().unwrap().as_ptr() as usize;
let to_append = Int32Chunked::new("a", &[4, 5, 6]);
ca.extend(&to_append);
let location2 = ca.cont_slice().unwrap().as_ptr() as usize;
assert_eq!(location, location2);
assert_eq!(ca.cont_slice().unwrap(), [1, 2, 3, 4, 5, 6]);
// now check if it succeeds if we cannot do this with a mutable.
let _temp = ca.chunks.clone();
ca.extend(&to_append);
let location2 = ca.cont_slice().unwrap().as_ptr() as usize;
assert_ne!(location, location2);
assert_eq!(ca.cont_slice().unwrap(), [1, 2, 3, 4, 5, 6, 4, 5, 6]);
}
#[test]
fn test_extend_utf8() {
let mut ca = Utf8Chunked::new("a", &["a", "b", "c"]);
let to_append = Utf8Chunked::new("a", &["a", "b", "e"]);
ca.extend(&to_append);
assert_eq!(ca.len(), 6);
let vals = ca.into_no_null_iter().collect::<Vec<_>>();
assert_eq!(vals, ["a", "b", "c", "a", "b", "e"])
}
#[test]
fn test_extend_bool() {
let mut ca = BooleanChunked::new("a", [true, false]);
let to_append = BooleanChunked::new("a", &[false, false]);
ca.extend(&to_append);
assert_eq!(ca.len(), 4);
let vals = ca.into_no_null_iter().collect::<Vec<_>>();
assert_eq!(vals, [true, false, false, false]);
}
}