1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! Implementations of the ChunkCast Trait.
use std::convert::TryFrom;

use arrow::compute::cast::CastOptions;

#[cfg(feature = "dtype-categorical")]
use crate::chunked_array::categorical::CategoricalChunkedBuilder;
use crate::prelude::*;

pub(crate) fn cast_chunks(
    chunks: &[ArrayRef],
    dtype: &DataType,
    checked: bool,
) -> PolarsResult<Vec<ArrayRef>> {
    let options = if checked {
        Default::default()
    } else {
        CastOptions {
            wrapped: true,
            partial: false,
        }
    };

    let arrow_dtype = dtype.to_arrow();
    let chunks = chunks
        .iter()
        .map(|arr| arrow::compute::cast::cast(arr.as_ref(), &arrow_dtype, options))
        .collect::<arrow::error::Result<Vec<_>>>()?;
    Ok(chunks)
}

fn cast_impl_inner(
    name: &str,
    chunks: &[ArrayRef],
    dtype: &DataType,
    checked: bool,
) -> PolarsResult<Series> {
    let chunks = cast_chunks(chunks, &dtype.to_physical(), checked)?;
    let out = Series::try_from((name, chunks))?;
    use DataType::*;
    let out = match dtype {
        Date => out.into_date(),
        Datetime(tu, tz) => out.into_datetime(*tu, tz.clone()),
        Duration(tu) => out.into_duration(*tu),
        #[cfg(feature = "dtype-time")]
        Time => out.into_time(),
        _ => out,
    };

    Ok(out)
}

fn cast_impl(name: &str, chunks: &[ArrayRef], dtype: &DataType) -> PolarsResult<Series> {
    cast_impl_inner(name, chunks, dtype, true)
}

#[cfg(feature = "dtype-struct")]
fn cast_single_to_struct(
    name: &str,
    chunks: &[ArrayRef],
    fields: &[Field],
) -> PolarsResult<Series> {
    let mut new_fields = Vec::with_capacity(fields.len());
    // cast to first field dtype
    let mut fields = fields.iter();
    let fld = fields.next().unwrap();
    let s = cast_impl_inner(&fld.name, chunks, &fld.dtype, true)?;
    let length = s.len();
    new_fields.push(s);

    for fld in fields {
        new_fields.push(Series::full_null(&fld.name, length, &fld.dtype));
    }

    Ok(StructChunked::new_unchecked(name, &new_fields).into_series())
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn cast_impl(&self, data_type: &DataType, checked: bool) -> PolarsResult<Series> {
        if self.dtype() == data_type {
            // safety: chunks are correct dtype
            let mut out = unsafe {
                Series::from_chunks_and_dtype_unchecked(self.name(), self.chunks.clone(), data_type)
            };
            out.set_sorted_flag(self.is_sorted_flag());
            return Ok(out);
        }
        match data_type {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(_) => {
                polars_ensure!(
                    self.dtype() == &DataType::UInt32,
                    ComputeError: "cannot cast numeric types to 'Categorical'"
                );
                // SAFETY
                // we are guarded by the type system
                let ca = unsafe { &*(self as *const ChunkedArray<T> as *const UInt32Chunked) };
                CategoricalChunked::from_global_indices(ca.clone()).map(|ca| ca.into_series())
            }
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(fields) => cast_single_to_struct(self.name(), &self.chunks, fields),
            _ => cast_impl_inner(self.name(), &self.chunks, data_type, checked).map(|mut s| {
                // maintain sorted if data types
                // - remain signed
                // - unsigned -> signed
                // this may still fail with overflow?
                let dtype = self.dtype();

                let to_signed = data_type.is_signed();
                let unsigned2unsigned = dtype.is_unsigned() && data_type.is_unsigned();
                let allowed = to_signed || unsigned2unsigned;

                if (allowed)
                    && (s.null_count() == self.null_count())
                    // physical to logicals
                    || (self.dtype().to_physical() == data_type.to_physical())
                {
                    let is_sorted = self.is_sorted_flag();
                    s.set_sorted_flag(is_sorted)
                }
                s
            }),
        }
    }
}

impl<T> ChunkCast for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.cast_impl(data_type, true)
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(Some(rev_map)) => {
                if self.dtype() == &DataType::UInt32 {
                    // safety:
                    // we are guarded by the type system.
                    let ca = unsafe { &*(self as *const ChunkedArray<T> as *const UInt32Chunked) };
                    Ok(unsafe {
                        CategoricalChunked::from_cats_and_rev_map_unchecked(
                            ca.clone(),
                            rev_map.clone(),
                        )
                    }
                    .into_series())
                } else {
                    polars_bail!(ComputeError: "cannot cast numeric types to 'Categorical'");
                }
            }
            _ => self.cast_impl(data_type, false),
        }
    }
}

impl ChunkCast for Utf8Chunked {
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(_) => {
                let iter = self.into_iter();
                let mut builder = CategoricalChunkedBuilder::new(self.name(), self.len());
                builder.drain_iter(iter);
                let ca = builder.finish();
                Ok(ca.into_series())
            }
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(fields) => cast_single_to_struct(self.name(), &self.chunks, fields),
            _ => cast_impl(self.name(), &self.chunks, data_type),
        }
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.cast(data_type)
    }
}

unsafe fn binary_to_utf8_unchecked(from: &BinaryArray<i64>) -> Utf8Array<i64> {
    let values = from.values().clone();
    let offsets = from.offsets().clone();
    Utf8Array::<i64>::try_new_unchecked(
        ArrowDataType::LargeUtf8,
        offsets,
        values,
        from.validity().cloned(),
    )
    .unwrap()
}

impl BinaryChunked {
    /// # Safety
    /// Utf8 is not validated
    pub unsafe fn to_utf8(&self) -> Utf8Chunked {
        let chunks = self
            .downcast_iter()
            .map(|arr| Box::new(binary_to_utf8_unchecked(arr)) as ArrayRef)
            .collect();
        Utf8Chunked::from_chunks(self.name(), chunks)
    }
}

impl Utf8Chunked {
    pub fn as_binary(&self) -> BinaryChunked {
        let chunks = self
            .downcast_iter()
            .map(|arr| {
                Box::new(arrow::compute::cast::utf8_to_binary(
                    arr,
                    ArrowDataType::LargeBinary,
                )) as ArrayRef
            })
            .collect();
        unsafe { BinaryChunked::from_chunks(self.name(), chunks) }
    }
}

impl ChunkCast for BinaryChunked {
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(fields) => cast_single_to_struct(self.name(), &self.chunks, fields),
            _ => cast_impl(self.name(), &self.chunks, data_type),
        }
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            DataType::Utf8 => unsafe { Ok(self.to_utf8().into_series()) },
            _ => self.cast(data_type),
        }
    }
}

fn boolean_to_utf8(ca: &BooleanChunked) -> Utf8Chunked {
    ca.into_iter()
        .map(|opt_b| match opt_b {
            Some(true) => Some("true"),
            Some(false) => Some("false"),
            None => None,
        })
        .collect()
}

impl ChunkCast for BooleanChunked {
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            DataType::Utf8 => {
                let mut ca = boolean_to_utf8(self);
                ca.rename(self.name());
                Ok(ca.into_series())
            }
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(fields) => cast_single_to_struct(self.name(), &self.chunks, fields),
            _ => cast_impl(self.name(), &self.chunks, data_type),
        }
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.cast(data_type)
    }
}

/// We cannot cast anything to or from List/LargeList
/// So this implementation casts the inner type
impl ChunkCast for ListChunked {
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        use DataType::*;
        match data_type {
            List(child_type) => {
                match (self.inner_dtype(), &**child_type) {
                    #[cfg(feature = "dtype-categorical")]
                    (dt, Categorical(None)) if !matches!(dt, Utf8 | Null) => {
                        polars_bail!(ComputeError: "cannot cast List inner type: '{:?}' to Categorical", dt)
                    }
                    _ => {
                        // ensure the inner logical type bubbles up
                        let (arr, child_type) = cast_list(self, child_type)?;
                        // Safety: we just casted so the dtype matches.
                        // we must take this path to correct for physical types.
                        unsafe {
                            Ok(Series::from_chunks_and_dtype_unchecked(
                                self.name(),
                                vec![arr],
                                &List(Box::new(child_type)),
                            ))
                        }
                    }
                }
            }
            #[cfg(feature = "dtype-array")]
            Array(_, _) => {
                // TODO! bubble up logical types
                let chunks = cast_chunks(self.chunks(), data_type, true)?;
                unsafe { Ok(ArrayChunked::from_chunks(self.name(), chunks).into_series()) }
            }
            _ => {
                polars_bail!(
                    ComputeError: "cannot cast List type (inner: '{:?}', to: '{:?}')",
                    self.inner_dtype(),
                    data_type,
                )
            }
        }
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.cast(data_type)
    }
}

/// We cannot cast anything to or from List/LargeList
/// So this implementation casts the inner type
#[cfg(feature = "dtype-array")]
impl ChunkCast for ArrayChunked {
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        use DataType::*;
        match data_type {
            Array(child_type, width) => {
                match (self.inner_dtype(), &**child_type) {
                    #[cfg(feature = "dtype-categorical")]
                    (dt, Categorical(None)) if !matches!(dt, Utf8) => {
                        polars_bail!(ComputeError: "cannot cast fixed-size-list inner type: '{:?}' to Categorical", dt)
                    }
                    _ => {
                        // ensure the inner logical type bubbles up
                        let (arr, child_type) = cast_fixed_size_list(self, child_type)?;
                        // Safety: we just casted so the dtype matches.
                        // we must take this path to correct for physical types.
                        unsafe {
                            Ok(Series::from_chunks_and_dtype_unchecked(
                                self.name(),
                                vec![arr],
                                &Array(Box::new(child_type), *width),
                            ))
                        }
                    }
                }
            }
            List(_) => {
                // TODO! bubble up logical types
                let chunks = cast_chunks(self.chunks(), data_type, true)?;
                unsafe { Ok(ListChunked::from_chunks(self.name(), chunks).into_series()) }
            }
            _ => polars_bail!(ComputeError: "cannot cast list type"),
        }
    }

    unsafe fn cast_unchecked(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.cast(data_type)
    }
}

// Returns inner data type. This is needed because a cast can instantiate the dtype inner
// values for instance with categoricals
fn cast_list(ca: &ListChunked, child_type: &DataType) -> PolarsResult<(ArrayRef, DataType)> {
    let ca = ca.rechunk();
    let arr = ca.downcast_iter().next().unwrap();
    // safety: inner dtype is passed correctly
    let s = unsafe {
        Series::from_chunks_and_dtype_unchecked("", vec![arr.values().clone()], &ca.inner_dtype())
    };
    let new_inner = s.cast(child_type)?;

    let inner_dtype = new_inner.dtype().clone();
    debug_assert_eq!(&inner_dtype, child_type);

    let new_values = new_inner.array_ref(0).clone();

    let data_type = ListArray::<i64>::default_datatype(new_values.data_type().clone());
    let new_arr = ListArray::<i64>::new(
        data_type,
        arr.offsets().clone(),
        new_values,
        arr.validity().cloned(),
    );
    Ok((Box::new(new_arr), inner_dtype))
}

// Returns inner data type. This is needed because a cast can instantiate the dtype inner
// values for instance with categoricals
#[cfg(feature = "dtype-array")]
fn cast_fixed_size_list(
    ca: &ArrayChunked,
    child_type: &DataType,
) -> PolarsResult<(ArrayRef, DataType)> {
    let ca = ca.rechunk();
    let arr = ca.downcast_iter().next().unwrap();
    // safety: inner dtype is passed correctly
    let s = unsafe {
        Series::from_chunks_and_dtype_unchecked("", vec![arr.values().clone()], &ca.inner_dtype())
    };
    let new_inner = s.cast(child_type)?;

    let inner_dtype = new_inner.dtype().clone();
    debug_assert_eq!(&inner_dtype, child_type);

    let new_values = new_inner.array_ref(0).clone();

    let data_type =
        FixedSizeListArray::default_datatype(new_values.data_type().clone(), ca.width());
    let new_arr = FixedSizeListArray::new(data_type, new_values, arr.validity().cloned());
    Ok((Box::new(new_arr), inner_dtype))
}

#[cfg(test)]
mod test {
    use crate::prelude::*;

    #[test]
    fn test_cast_list() -> PolarsResult<()> {
        let mut builder =
            ListPrimitiveChunkedBuilder::<Int32Type>::new("a", 10, 10, DataType::Int32);
        builder.append_opt_slice(Some(&[1i32, 2, 3]));
        builder.append_opt_slice(Some(&[1i32, 2, 3]));
        let ca = builder.finish();

        let new = ca.cast(&DataType::List(DataType::Float64.into()))?;

        assert_eq!(new.dtype(), &DataType::List(DataType::Float64.into()));
        Ok(())
    }

    #[test]
    #[cfg(feature = "dtype-categorical")]
    fn test_cast_noop() {
        // check if we can cast categorical twice without panic
        let ca = Utf8Chunked::new("foo", &["bar", "ham"]);
        let out = ca.cast(&DataType::Categorical(None)).unwrap();
        let out = out.cast(&DataType::Categorical(None)).unwrap();
        assert!(matches!(out.dtype(), &DataType::Categorical(_)))
    }
}