pub fn _duplicate_err(name: &str) -> PolarsResult<()>
Examples found in repository?
src/frame/mod.rs (line 256)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    pub fn new<S: IntoSeries>(columns: Vec<S>) -> PolarsResult<Self> {
        let mut first_len = None;

        let shape_err = |s: &[Series]| {
            let msg = format!(
                "Could not create a new DataFrame from Series. \
            The Series have different lengths. \
            Got {s:?}",
            );
            Err(PolarsError::ShapeMisMatch(msg.into()))
        };

        let series_cols = if S::is_series() {
            // Safety:
            // we are guarded by the type system here.
            #[allow(clippy::transmute_undefined_repr)]
            let series_cols = unsafe { std::mem::transmute::<Vec<S>, Vec<Series>>(columns) };
            let mut names = PlHashSet::with_capacity(series_cols.len());

            for s in &series_cols {
                match first_len {
                    Some(len) => {
                        if s.len() != len {
                            return shape_err(&series_cols);
                        }
                    }
                    None => first_len = Some(s.len()),
                }
                let name = s.name();

                if names.contains(name) {
                    _duplicate_err(name)?
                }

                names.insert(name);
            }
            // we drop early as the brchk thinks the &str borrows are used when calling the drop
            // of both `series_cols` and `names`
            drop(names);
            series_cols
        } else {
            let mut series_cols = Vec::with_capacity(columns.len());
            let mut names = PlHashSet::with_capacity(columns.len());

            // check for series length equality and convert into series in one pass
            for s in columns {
                let series = s.into_series();
                match first_len {
                    Some(len) => {
                        if series.len() != len {
                            return shape_err(&series_cols);
                        }
                    }
                    None => first_len = Some(series.len()),
                }
                // we have aliasing borrows so we must allocate a string
                let name = series.name().to_string();

                if names.contains(&name) {
                    _duplicate_err(&name)?
                }

                series_cols.push(series);
                names.insert(name);
            }
            drop(names);
            series_cols
        };

        Ok(DataFrame {
            columns: series_cols,
        })
    }

    /// Creates an empty `DataFrame` usable in a compile time context (such as static initializers).
    ///
    /// # Example
    ///
    /// ```rust
    /// use polars_core::prelude::DataFrame;
    /// static EMPTY: DataFrame = DataFrame::empty();
    /// ```
    pub const fn empty() -> Self {
        DataFrame::new_no_checks(Vec::new())
    }

    /// Removes the last `Series` from the `DataFrame` and returns it, or [`None`] if it is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1 = Series::new("Ocean", &["Atlantic", "Indian"]);
    /// let s2 = Series::new("Area (km²)", &[106_460_000, 70_560_000]);
    /// let mut df = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// assert_eq!(df.pop(), Some(s2));
    /// assert_eq!(df.pop(), Some(s1));
    /// assert_eq!(df.pop(), None);
    /// assert!(df.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn pop(&mut self) -> Option<Series> {
        self.columns.pop()
    }

    /// Add a new column at index 0 that counts the rows.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Name" => &["James", "Mary", "John", "Patricia"])?;
    /// assert_eq!(df1.shape(), (4, 1));
    ///
    /// let df2: DataFrame = df1.with_row_count("Id", None)?;
    /// assert_eq!(df2.shape(), (4, 2));
    /// println!("{}", df2);
    ///
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    ///  shape: (4, 2)
    ///  +-----+----------+
    ///  | Id  | Name     |
    ///  | --- | ---      |
    ///  | u32 | str      |
    ///  +=====+==========+
    ///  | 0   | James    |
    ///  +-----+----------+
    ///  | 1   | Mary     |
    ///  +-----+----------+
    ///  | 2   | John     |
    ///  +-----+----------+
    ///  | 3   | Patricia |
    ///  +-----+----------+
    /// ```
    pub fn with_row_count(&self, name: &str, offset: Option<IdxSize>) -> PolarsResult<Self> {
        let mut columns = Vec::with_capacity(self.columns.len() + 1);
        let offset = offset.unwrap_or(0);

        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);
        columns.push(ca.into_series());

        columns.extend_from_slice(&self.columns);
        DataFrame::new(columns)
    }

    /// Add a row count in place.
    pub fn with_row_count_mut(&mut self, name: &str, offset: Option<IdxSize>) -> &mut Self {
        let offset = offset.unwrap_or(0);
        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);

        self.columns.insert(0, ca.into_series());
        self
    }

    /// Create a new `DataFrame` but does not check the length or duplicate occurrence of the `Series`.
    ///
    /// It is advised to use [Series::new](Series::new) in favor of this method.
    ///
    /// # Panic
    /// It is the callers responsibility to uphold the contract of all `Series`
    /// having an equal length, if not this may panic down the line.
    pub const fn new_no_checks(columns: Vec<Series>) -> DataFrame {
        DataFrame { columns }
    }

    /// Aggregate all chunks to contiguous memory.
    #[must_use]
    pub fn agg_chunks(&self) -> Self {
        // Don't parallelize this. Memory overhead
        let f = |s: &Series| s.rechunk();
        let cols = self.columns.iter().map(f).collect();
        DataFrame::new_no_checks(cols)
    }

    /// Shrink the capacity of this DataFrame to fit its length.
    pub fn shrink_to_fit(&mut self) {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            s.shrink_to_fit();
        }
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk.
    pub fn as_single_chunk(&mut self) -> &mut Self {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            *s = s.rechunk();
        }
        self
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk in parallel.
    /// This may lead to more peak memory consumption.
    pub fn as_single_chunk_par(&mut self) -> &mut Self {
        if self.columns.iter().any(|s| s.n_chunks() > 1) {
            self.columns = self.apply_columns_par(&|s| s.rechunk());
        }
        self
    }

    /// Estimates of the DataFrames columns consist of the same chunk sizes
    pub fn should_rechunk(&self) -> bool {
        let hb = RandomState::default();
        let hb2 = RandomState::with_seeds(392498, 98132457, 0, 412059);
        !self
            .columns
            .iter()
            // The idea is that we create a hash of the chunk lengths.
            // Consisting of the combined hash + the sum (assuming collision probability is nihil)
            // if not, we can add more hashes or at worst case we do an extra rechunk.
            // the old solution to this was clone all lengths to a vec and compare the vecs
            .map(|s| {
                s.chunk_lengths().map(|i| i as u64).fold(
                    (0u64, 0u64, s.n_chunks()),
                    |(lhash, lh2, n), rval| {
                        let mut h = hb.build_hasher();
                        rval.hash(&mut h);
                        let rhash = h.finish();
                        let mut h = hb2.build_hasher();
                        rval.hash(&mut h);
                        let rh2 = h.finish();
                        (
                            _boost_hash_combine(lhash, rhash),
                            _boost_hash_combine(lh2, rh2),
                            n,
                        )
                    },
                )
            })
            .all_equal()
    }

    /// Ensure all the chunks in the DataFrame are aligned.
    pub fn rechunk(&mut self) -> &mut Self {
        if self.should_rechunk() {
            self.as_single_chunk_par()
        } else {
            self
        }
    }

    /// Get the `DataFrame` schema.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Thing" => &["Observable universe", "Human stupidity"],
    ///                         "Diameter (m)" => &[8.8e26, f64::INFINITY])?;
    ///
    /// let f1: Field = Field::new("Thing", DataType::Utf8);
    /// let f2: Field = Field::new("Diameter (m)", DataType::Float64);
    /// let sc: Schema = Schema::from(vec![f1, f2].into_iter());
    ///
    /// assert_eq!(df.schema(), sc);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn schema(&self) -> Schema {
        Schema::from(self.iter().map(|s| s.field().into_owned()))
    }

    /// Get a reference to the `DataFrame` columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Adenine", "Cytosine", "Guanine", "Thymine"],
    ///                         "Symbol" => &["A", "C", "G", "T"])?;
    /// let columns: &Vec<Series> = df.get_columns();
    ///
    /// assert_eq!(columns[0].name(), "Name");
    /// assert_eq!(columns[1].name(), "Symbol");
    /// # Ok::<(), PolarsError>(())
    /// ```
    #[inline]
    pub fn get_columns(&self) -> &Vec<Series> {
        &self.columns
    }

    #[cfg(feature = "private")]
    #[inline]
    pub fn get_columns_mut(&mut self) -> &mut Vec<Series> {
        &mut self.columns
    }

    /// Iterator over the columns as `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Name", &["Pythagoras' theorem", "Shannon entropy"]);
    /// let s2: Series = Series::new("Formula", &["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// let mut iterator = df.iter();
    ///
    /// assert_eq!(iterator.next(), Some(&s1));
    /// assert_eq!(iterator.next(), Some(&s2));
    /// assert_eq!(iterator.next(), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn iter(&self) -> std::slice::Iter<'_, Series> {
        self.columns.iter()
    }

    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Language" => &["Rust", "Python"],
    ///                         "Designer" => &["Graydon Hoare", "Guido van Rossum"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn get_column_names(&self) -> Vec<&str> {
        self.columns.iter().map(|s| s.name()).collect()
    }

    /// Get the `Vec<String>` representing the column names.
    pub fn get_column_names_owned(&self) -> Vec<String> {
        self.columns.iter().map(|s| s.name().to_string()).collect()
    }

    /// Set the column names.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Mathematical set" => &["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
    /// df.set_column_names(&["Set"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Set"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn set_column_names<S: AsRef<str>>(&mut self, names: &[S]) -> PolarsResult<()> {
        if names.len() != self.columns.len() {
            return Err(PolarsError::ShapeMisMatch("the provided slice with column names has not the same size as the DataFrame's width".into()));
        }
        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(names.iter().map(|name| name.as_ref()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }

        let columns = mem::take(&mut self.columns);
        self.columns = columns
            .into_iter()
            .zip(names)
            .map(|(s, name)| {
                let mut s = s;
                s.rename(name.as_ref());
                s
            })
            .collect();
        Ok(())
    }

    /// Get the data types of the columns in the DataFrame.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let venus_air: DataFrame = df!("Element" => &["Carbon dioxide", "Nitrogen"],
    ///                                "Fraction" => &[0.965, 0.035])?;
    ///
    /// assert_eq!(venus_air.dtypes(), &[DataType::Utf8, DataType::Float64]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

    /// Get a reference to the schema fields of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let earth: DataFrame = df!("Surface type" => &["Water", "Land"],
    ///                            "Fraction" => &[0.708, 0.292])?;
    ///
    /// let f1: Field = Field::new("Surface type", DataType::Utf8);
    /// let f2: Field = Field::new("Fraction", DataType::Float64);
    ///
    /// assert_eq!(earth.fields(), &[f1, f2]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn fields(&self) -> Vec<Field> {
        self.columns
            .iter()
            .map(|s| s.field().into_owned())
            .collect()
    }

    /// Get (height, width) of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("1" => &[1, 2, 3, 4, 5])?;
    /// let df2: DataFrame = df!("1" => &[1, 2, 3, 4, 5],
    ///                          "2" => &[1, 2, 3, 4, 5])?;
    ///
    /// assert_eq!(df0.shape(), (0 ,0));
    /// assert_eq!(df1.shape(), (5, 1));
    /// assert_eq!(df2.shape(), (5, 2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn shape(&self) -> (usize, usize) {
        match self.columns.as_slice() {
            &[] => (0, 0),
            v => (v[0].len(), v.len()),
        }
    }

    /// Get the width of the `DataFrame` which is the number of columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Series 1" => &[0; 0])?;
    /// let df2: DataFrame = df!("Series 1" => &[0; 0],
    ///                          "Series 2" => &[0; 0])?;
    ///
    /// assert_eq!(df0.width(), 0);
    /// assert_eq!(df1.width(), 1);
    /// assert_eq!(df2.width(), 2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn width(&self) -> usize {
        self.columns.len()
    }

    /// Get the height of the `DataFrame` which is the number of rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Currency" => &["€", "$"])?;
    /// let df2: DataFrame = df!("Currency" => &["€", "$", "¥", "£", "₿"])?;
    ///
    /// assert_eq!(df0.height(), 0);
    /// assert_eq!(df1.height(), 2);
    /// assert_eq!(df2.height(), 5);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn height(&self) -> usize {
        self.shape().0
    }

    /// Check if the `DataFrame` is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = DataFrame::default();
    /// assert!(df1.is_empty());
    ///
    /// let df2: DataFrame = df!("First name" => &["Forever"],
    ///                          "Last name" => &["Alone"])?;
    /// assert!(!df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_empty(&self) -> bool {
        self.columns.is_empty()
    }

    pub(crate) fn hstack_mut_no_checks(&mut self, columns: &[Series]) -> &mut Self {
        for col in columns {
            self.columns.push(col.clone());
        }
        self
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn stack(df: &mut DataFrame, columns: &[Series]) {
    ///     df.hstack_mut(columns);
    /// }
    /// ```
    pub fn hstack_mut(&mut self, columns: &[Series]) -> PolarsResult<&mut Self> {
        let mut names = PlHashSet::with_capacity(self.columns.len());
        for s in &self.columns {
            names.insert(s.name());
        }

        let height = self.height();
        // first loop check validity. We don't do this in a single pass otherwise
        // this DataFrame is already modified when an error occurs.
        for col in columns {
            if col.len() != height && height != 0 {
                return Err(PolarsError::ShapeMisMatch(
                    format!("Could not horizontally stack Series. The Series length {} differs from the DataFrame height: {height}", col.len()).into()));
            }

            let name = col.name();
            if names.contains(name) {
                return Err(PolarsError::Duplicate(
                    format!("Cannot do hstack operation. Column with name: {name} already exists",)
                        .into(),
                ));
            }
            names.insert(name);
        }
        drop(names);
        Ok(self.hstack_mut_no_checks(columns))
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"])?;
    /// let s1: Series = Series::new("Proton", &[29, 47, 79]);
    /// let s2: Series = Series::new("Electron", &[29, 47, 79]);
    ///
    /// let df2: DataFrame = df1.hstack(&[s1, s2])?;
    /// assert_eq!(df2.shape(), (3, 3));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 3)
    /// +---------+--------+----------+
    /// | Element | Proton | Electron |
    /// | ---     | ---    | ---      |
    /// | str     | i32    | i32      |
    /// +=========+========+==========+
    /// | Copper  | 29     | 29       |
    /// +---------+--------+----------+
    /// | Silver  | 47     | 47       |
    /// +---------+--------+----------+
    /// | Gold    | 79     | 79       |
    /// +---------+--------+----------+
    /// ```
    pub fn hstack(&self, columns: &[Series]) -> PolarsResult<Self> {
        let mut new_cols = self.columns.clone();
        new_cols.extend_from_slice(columns);
        DataFrame::new(new_cols)
    }

    /// Concatenate a `DataFrame` to this `DataFrame` and return as newly allocated `DataFrame`.
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// let df3: DataFrame = df1.vstack(&df2)?;
    ///
    /// assert_eq!(df3.shape(), (5, 2));
    /// println!("{}", df3);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack(&self, other: &DataFrame) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.vstack_mut(other)?;
        Ok(df)
    }

    /// Concatenate a DataFrame to this DataFrame
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// df1.vstack_mut(&df2)?;
    ///
    /// assert_eq!(df1.shape(), (5, 2));
    /// println!("{}", df1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack_mut(&mut self, other: &DataFrame) -> PolarsResult<&mut Self> {
        if self.width() != other.width() {
            if self.width() == 0 {
                self.columns = other.columns.clone();
                return Ok(self);
            }

            return Err(PolarsError::ShapeMisMatch(
                format!("Could not vertically stack DataFrame. The DataFrames appended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.append(right).expect("should not fail");
                Ok(())
            })?;
        Ok(self)
    }

    /// Does not check if schema is correct
    pub(crate) fn vstack_mut_unchecked(&mut self, other: &DataFrame) {
        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .for_each(|(left, right)| {
                left.append(right).expect("should not fail");
            });
    }

    /// Extend the memory backed by this [`DataFrame`] with the values from `other`.
    ///
    /// Different from [`vstack`](Self::vstack) which adds the chunks from `other` to the chunks of this [`DataFrame`]
    /// `extend` appends the data from `other` to the underlying memory locations and thus may cause a reallocation.
    ///
    /// If this does not cause a reallocation, the resulting data structure will not have any extra chunks
    /// and thus will yield faster queries.
    ///
    /// Prefer `extend` over `vstack` when you want to do a query after a single append. For instance during
    /// online operations where you add `n` rows and rerun a query.
    ///
    /// Prefer `vstack` over `extend` when you want to append many times before doing a query. For instance
    /// when you read in multiple files and when to store them in a single `DataFrame`. In the latter case, finish the sequence
    /// of `append` operations with a [`rechunk`](Self::rechunk).
    pub fn extend(&mut self, other: &DataFrame) -> PolarsResult<()> {
        if self.width() != other.width() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Could not extend DataFrame. The DataFrames extended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.extend(right).unwrap();
                Ok(())
            })?;
        Ok(())
    }

    /// Remove a column by name and return the column removed.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Animal" => &["Tiger", "Lion", "Great auk"],
    ///                             "IUCN" => &["Endangered", "Vulnerable", "Extinct"])?;
    ///
    /// let s1: PolarsResult<Series> = df.drop_in_place("Average weight");
    /// assert!(s1.is_err());
    ///
    /// let s2: Series = df.drop_in_place("Animal")?;
    /// assert_eq!(s2, Series::new("Animal", &["Tiger", "Lion", "Great auk"]));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop_in_place(&mut self, name: &str) -> PolarsResult<Series> {
        let idx = self.check_name_to_idx(name)?;
        Ok(self.columns.remove(idx))
    }

    /// Return a new `DataFrame` where all null values are dropped.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Country" => ["Malta", "Liechtenstein", "North Korea"],
    ///                         "Tax revenue (% GDP)" => [Some(32.7), None, None])?;
    /// assert_eq!(df1.shape(), (3, 2));
    ///
    /// let df2: DataFrame = df1.drop_nulls(None)?;
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------------------+
    /// | Country | Tax revenue (% GDP) |
    /// | ---     | ---                 |
    /// | str     | f64                 |
    /// +=========+=====================+
    /// | Malta   | 32.7                |
    /// +---------+---------------------+
    /// ```
    pub fn drop_nulls(&self, subset: Option<&[String]>) -> PolarsResult<Self> {
        let selected_series;

        let mut iter = match subset {
            Some(cols) => {
                selected_series = self.select_series(cols)?;
                selected_series.iter()
            }
            None => self.columns.iter(),
        };

        // fast path for no nulls in df
        if iter.clone().all(|s| !s.has_validity()) {
            return Ok(self.clone());
        }

        let mask = iter
            .next()
            .ok_or_else(|| PolarsError::NoData("No data to drop nulls from".into()))?;
        let mut mask = mask.is_not_null();

        for s in iter {
            mask = mask & s.is_not_null();
        }
        self.filter(&mask)
    }

    /// Drop a column by name.
    /// This is a pure method and will return a new `DataFrame` instead of modifying
    /// the current one in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Ray type" => &["α", "β", "X", "γ"])?;
    /// let df2: DataFrame = df1.drop("Ray type")?;
    ///
    /// assert!(df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop(&self, name: &str) -> PolarsResult<Self> {
        let idx = self.check_name_to_idx(name)?;
        let mut new_cols = Vec::with_capacity(self.columns.len() - 1);

        self.columns.iter().enumerate().for_each(|(i, s)| {
            if i != idx {
                new_cols.push(s.clone())
            }
        });

        Ok(DataFrame::new_no_checks(new_cols))
    }

    pub fn drop_many<S: AsRef<str>>(&self, names: &[S]) -> Self {
        let names = names.iter().map(|s| s.as_ref()).collect();
        fn inner(df: &DataFrame, names: Vec<&str>) -> DataFrame {
            let mut new_cols = Vec::with_capacity(df.columns.len() - names.len());
            df.columns.iter().for_each(|s| {
                if !names.contains(&s.name()) {
                    new_cols.push(s.clone())
                }
            });

            DataFrame::new_no_checks(new_cols)
        }
        inner(self, names)
    }

    fn insert_at_idx_no_name_check(
        &mut self,
        index: usize,
        series: Series,
    ) -> PolarsResult<&mut Self> {
        if series.len() == self.height() {
            self.columns.insert(index, series);
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                .into(),
            ))
        }
    }

    /// Insert a new column at a given index.
    pub fn insert_at_idx<S: IntoSeries>(
        &mut self,
        index: usize,
        column: S,
    ) -> PolarsResult<&mut Self> {
        let series = column.into_series();
        self.check_already_present(series.name())?;
        self.insert_at_idx_no_name_check(index, series)
    }

    fn add_column_by_search(&mut self, series: Series) -> PolarsResult<()> {
        if let Some(idx) = self.find_idx_by_name(series.name()) {
            self.replace_at_idx(idx, series)?;
        } else {
            self.columns.push(series);
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    pub fn with_column<S: IntoSeries>(&mut self, column: S) -> PolarsResult<&mut Self> {
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }