1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use crate::prelude::*;
use ndarray::prelude::*;

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// If data is aligned in a single chunk and has no Null values a zero copy view is returned
    /// as an `ndarray`
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray(&self) -> Result<ArrayView1<T::Native>> {
        let slice = self.cont_slice()?;
        Ok(aview1(slice))
    }
}

impl ListChunked {
    /// If all nested `Series` have the same length, a 2 dimensional `ndarray::Array` is returned.
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> Result<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        if self.null_count() != 0 {
            Err(PolarsError::HasNullValues(
                "Creation of ndarray with null values is not supported.".into(),
            ))
        } else {
            let mut iter = self.into_no_null_iter();

            let mut ndarray;
            let width;

            // first iteration determine the size
            if let Some(series) = iter.next() {
                width = series.len();

                let mut row_idx = 0;
                ndarray = ndarray::Array::uninit((self.len(), width));

                let series = series.cast(&N::get_dtype())?;
                let ca = series.unpack::<N>()?;
                let a = ca.to_ndarray()?;
                let mut row = ndarray.slice_mut(s![row_idx, ..]);
                a.assign_to(&mut row);
                row_idx += 1;

                for series in iter {
                    if series.len() != width {
                        return Err(PolarsError::ShapeMisMatch(
                            "Could not create a 2D array. Series have different lengths".into(),
                        ));
                    }
                    let series = series.cast(&N::get_dtype())?;
                    let ca = series.unpack::<N>()?;
                    let a = ca.to_ndarray()?;
                    let mut row = ndarray.slice_mut(s![row_idx, ..]);
                    a.assign_to(&mut row);
                    row_idx += 1;
                }

                debug_assert_eq!(row_idx, self.len());
                // Safety:
                // We have assigned to every row and element of the array
                unsafe { Ok(ndarray.assume_init()) }
            } else {
                Err(PolarsError::NoData(
                    "cannot create ndarray of empty ListChunked".into(),
                ))
            }
        }
    }
}

impl DataFrame {
    /// Create a 2D `ndarray::Array` from this `DataFrame`. This requires all columns in the
    /// `DataFrame` to be non-null and numeric. They will be casted to the same data type
    /// (if they aren't already).
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let a = UInt32Chunked::new_from_slice("a", &[1, 2, 3]).into_series();
    /// let b = Float64Chunked::new_from_slice("b", &[10., 8., 6.]).into_series();
    ///
    /// let df = DataFrame::new(vec![a, b]).unwrap();
    /// let ndarray = df.to_ndarray::<Float64Type>().unwrap();
    /// println!("{:?}", ndarray);
    /// ```
    /// Outputs:
    /// ```text
    /// [[1.0, 10.0],
    ///  [2.0, 8.0],
    ///  [3.0, 6.0]], shape=[3, 2], strides=[2, 1], layout=C (0x1), const ndim=2/
    /// ```
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> Result<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let mut ndarr = Array2::zeros(self.shape());
        for (col_idx, series) in self.get_columns().iter().enumerate() {
            if series.null_count() != 0 {
                return Err(PolarsError::HasNullValues(
                    "Creation of ndarray with null values is not supported.".into(),
                ));
            }
            // this is an Arc clone if already of type N
            let series = series.cast(&N::get_dtype())?;
            let ca = series.unpack::<N>()?;

            ca.into_no_null_iter()
                .enumerate()
                .for_each(|(row_idx, val)| {
                    ndarr[[row_idx, col_idx]] = val;
                })
        }
        Ok(ndarr)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_ndarray_from_ca() -> Result<()> {
        let ca = Float64Chunked::new_from_slice("", &[1.0, 2.0, 3.0]);
        let ndarr = ca.to_ndarray()?;
        assert_eq!(ndarr, ArrayView1::from(&[1.0, 2.0, 3.0]));

        let mut builder = ListPrimitiveChunkedBuilder::new("", 10, 10, DataType::Float64);
        builder.append_slice(Some(&[1.0, 2.0, 3.0]));
        builder.append_slice(Some(&[2.0, 4.0, 5.0]));
        builder.append_slice(Some(&[6.0, 7.0, 8.0]));
        let list = builder.finish();

        let ndarr = list.to_ndarray::<Float64Type>()?;
        let expected = array![[1.0, 2.0, 3.0], [2.0, 4.0, 5.0], [6.0, 7.0, 8.0]];
        assert_eq!(ndarr, expected);

        // test list array that is not square
        let mut builder = ListPrimitiveChunkedBuilder::new("", 10, 10, DataType::Float64);
        builder.append_slice(Some(&[1.0, 2.0, 3.0]));
        builder.append_slice(Some(&[2.0]));
        builder.append_slice(Some(&[6.0, 7.0, 8.0]));
        let list = builder.finish();
        assert!(list.to_ndarray::<Float64Type>().is_err());
        Ok(())
    }

    #[test]
    fn test_ndarray_from_df() -> Result<()> {
        let df = df!["a"=> [1.0, 2.0, 3.0],
            "b" => [2.0, 3.0, 4.0]
        ]?;

        let ndarr = df.to_ndarray::<Float64Type>()?;
        let expected = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
        assert_eq!(ndarr, expected);

        Ok(())
    }
}