1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
use crate::prelude::*;
use arrow::bitmap::MutableBitmap;
use num::{FromPrimitive, Zero};
use std::ops::{Add, Div, Mul, Sub};
fn linear_itp<T>(low: T, step: T, diff: T, steps_n: T) -> T
where
T: Sub<Output = T> + Mul<Output = T> + Add<Output = T> + Div<Output = T>,
{
low + step * diff / steps_n
}
impl<T> Interpolate for ChunkedArray<T>
where
T: PolarsNumericType,
T::Native: Sub<Output = T::Native>
+ Mul<Output = T::Native>
+ Add<Output = T::Native>
+ Div<Output = T::Native>
+ FromPrimitive
+ Zero,
{
fn interpolate(&self) -> Self {
if self.null_count() == 0 || self.null_count() == self.len() {
return self.clone();
}
let mut first = 0;
let mut last = self.len();
for i in 0..self.len() {
if unsafe { self.get_unchecked(i).is_some() } {
first = i;
break;
}
}
for i in (0..self.len()).rev() {
if unsafe { self.get_unchecked(i).is_some() } {
last = i + 1;
break;
}
}
let mut av = AlignedVec::with_capacity(self.len());
let mut iter = self.into_iter();
for _ in 0..first {
av.push(Zero::zero())
}
let mut low_val = None;
loop {
let next = iter.next();
match next {
Some(Some(v)) => {
av.push(v);
low_val = Some(v);
}
Some(None) => {
match low_val {
None => continue,
Some(low) => {
let mut steps = 1u32;
loop {
steps += 1;
match iter.next() {
None => break,
Some(None) => {}
Some(Some(high)) => {
let diff = high - low;
let steps_n = T::Native::from_u32(steps).unwrap();
for step_i in 1..steps {
let step_i = T::Native::from_u32(step_i).unwrap();
let v = linear_itp(low, step_i, diff, steps_n);
av.push(v)
}
av.push(high);
break;
}
}
}
}
}
}
None => {
break;
}
}
}
if first != 0 || last != self.len() {
let mut validity = MutableBitmap::with_capacity(self.len());
validity.extend_constant(self.len(), true);
for i in 0..first {
validity.set(i, false);
}
for i in last..self.len() {
validity.set(i, false);
av.push(Zero::zero())
}
let array = PrimitiveArray::from_data(
T::get_dtype().to_arrow(),
av.into(),
Some(validity.into()),
);
Self::new_from_chunks(self.name(), vec![Arc::new(array)])
} else {
Self::new_from_aligned_vec(self.name(), av)
}
}
}
macro_rules! interpolate {
($ca:ty) => {
impl Interpolate for $ca {
fn interpolate(&self) -> Self {
self.clone()
}
}
};
}
interpolate!(Utf8Chunked);
interpolate!(ListChunked);
interpolate!(BooleanChunked);
interpolate!(CategoricalChunked);
#[cfg(feature = "object")]
impl<T: PolarsObject> Interpolate for ObjectChunked<T> {
fn interpolate(&self) -> Self {
self.clone()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_interpolate() {
let ca = UInt32Chunked::new_from_opt_slice("", &[Some(1), None, None, Some(4), Some(5)]);
let out = ca.interpolate();
assert_eq!(
Vec::from(&out),
&[Some(1), Some(2), Some(3), Some(4), Some(5)]
);
let ca =
UInt32Chunked::new_from_opt_slice("", &[None, Some(1), None, None, Some(4), Some(5)]);
let out = ca.interpolate();
assert_eq!(
Vec::from(&out),
&[None, Some(1), Some(2), Some(3), Some(4), Some(5)]
);
let ca = UInt32Chunked::new_from_opt_slice(
"",
&[None, Some(1), None, None, Some(4), Some(5), None],
);
let out = ca.interpolate();
assert_eq!(
Vec::from(&out),
&[None, Some(1), Some(2), Some(3), Some(4), Some(5), None]
);
let ca = Utf8Chunked::new_from_opt_slice(
"",
&[None, Some("foo"), None, None, Some("bar"), None, None],
);
let out = ca.interpolate();
assert_eq!(
Vec::from(&out),
&[None, Some("foo"), None, None, Some("bar"), None, None]
);
}
}