1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use crate::prelude::*;
use itertools::__std_iter::FromIterator;
use num::Bounded;
use std::ops::{Add, AddAssign};
fn det_max<T>(state: &mut T, v: Option<T>) -> Option<Option<T>>
where
T: Copy + PartialOrd + AddAssign + Add<Output = T>,
{
match v {
Some(v) => {
if v > *state {
*state = v
}
Some(Some(*state))
}
None => Some(None),
}
}
fn det_min<T>(state: &mut T, v: Option<T>) -> Option<Option<T>>
where
T: Copy + PartialOrd + AddAssign + Add<Output = T>,
{
match v {
Some(v) => {
if v < *state {
*state = v
}
Some(Some(*state))
}
None => Some(None),
}
}
fn det_sum<T>(state: &mut Option<T>, v: Option<T>) -> Option<Option<T>>
where
T: Copy + PartialOrd + AddAssign + Add<Output = T>,
{
match (*state, v) {
(Some(state_inner), Some(v)) => {
*state = Some(state_inner + v);
Some(*state)
}
(None, Some(v)) => {
*state = Some(v);
Some(*state)
}
(_, None) => Some(None),
}
}
impl<T> ChunkCumAgg<T> for ChunkedArray<T>
where
T: PolarsNumericType,
T::Native: Bounded + PartialOrd + AddAssign + Add<Output = T::Native>,
ChunkedArray<T>: FromIterator<Option<T::Native>>,
{
fn cum_max(&self, reverse: bool) -> ChunkedArray<T> {
let init = Bounded::min_value();
let mut ca: Self = match reverse {
false => self.into_iter().scan(init, det_max).collect(),
true => self.into_iter().rev().scan(init, det_max).collect(),
};
ca.rename(self.name());
if reverse {
ca.reverse()
} else {
ca
}
}
fn cum_min(&self, reverse: bool) -> ChunkedArray<T> {
let init = Bounded::max_value();
let mut ca: Self = match reverse {
false => self.into_iter().scan(init, det_min).collect(),
true => self.into_iter().rev().scan(init, det_min).collect(),
};
ca.rename(self.name());
if reverse {
ca.reverse()
} else {
ca
}
}
fn cum_sum(&self, reverse: bool) -> ChunkedArray<T> {
let init = None;
let mut ca: Self = match reverse {
false => self.into_iter().scan(init, det_sum).collect(),
true => self.into_iter().rev().scan(init, det_sum).collect(),
};
ca.rename(self.name());
if reverse {
ca.reverse()
} else {
ca
}
}
}
impl ChunkCumAgg<CategoricalType> for CategoricalChunked {}
impl ChunkCumAgg<Utf8Type> for Utf8Chunked {}
impl ChunkCumAgg<ListType> for ListChunked {}
impl ChunkCumAgg<BooleanType> for BooleanChunked {}
#[cfg(feature = "object")]
impl<T> ChunkCumAgg<ObjectType<T>> for ObjectChunked<T> {}
#[cfg(test)]
mod test {
use crate::prelude::*;
#[test]
fn test_cum_max() {
let ca = UInt8Chunked::new_from_opt_slice("foo", &[None, Some(1), Some(3), None, Some(1)]);
let out = ca.cum_max(true);
assert_eq!(Vec::from(&out), &[None, Some(3), Some(3), None, Some(1)]);
let out = ca.cum_max(false);
assert_eq!(Vec::from(&out), &[None, Some(1), Some(3), None, Some(3)]);
}
#[test]
fn test_cum_min() {
let ca = UInt8Chunked::new_from_opt_slice("foo", &[None, Some(1), Some(3), None, Some(2)]);
let out = ca.cum_min(true);
assert_eq!(Vec::from(&out), &[None, Some(1), Some(2), None, Some(2)]);
let out = ca.cum_min(false);
assert_eq!(Vec::from(&out), &[None, Some(1), Some(1), None, Some(1)]);
}
#[test]
fn test_cum_sum() {
let ca = Int32Chunked::new_from_opt_slice("foo", &[None, Some(1), Some(3), None, Some(1)]);
let out = ca.cum_sum(true);
assert_eq!(Vec::from(&out), &[None, Some(5), Some(4), None, Some(1)]);
let out = ca.cum_sum(false);
assert_eq!(Vec::from(&out), &[None, Some(1), Some(4), None, Some(5)]);
let ca = Float32Chunked::new_from_opt_slice(
"foo",
&[None, Some(1.0), Some(3.0), None, Some(1.0)],
);
let _out = ca.cum_sum(false);
}
}