1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
//! Implementations of upstream traits for ChunkedArray<T>
use crate::chunked_array::builder::get_list_builder;
#[cfg(feature = "object")]
use crate::chunked_array::object::ObjectArray;
use crate::prelude::*;
use crate::utils::arrow::buffer::MutableBuffer;
use crate::utils::NoNull;
use crate::utils::{get_iter_capacity, CustomIterTools};
use arrow::array::{ArrayData, BooleanArray, LargeStringArray, PrimitiveArray};
use arrow::buffer::Buffer;
#[cfg(feature = "object")]
use polars_arrow::prelude::BooleanBufferBuilder;
use polars_arrow::trusted_len::trusted_len_unzip_extend;
use rayon::iter::{FromParallelIterator, IntoParallelIterator};
use rayon::prelude::*;
use std::borrow::{Borrow, Cow};
use std::collections::LinkedList;
use std::iter::FromIterator;
use std::marker::PhantomData;
use std::sync::Arc;

impl<T> Default for ChunkedArray<T> {
    fn default() -> Self {
        ChunkedArray {
            field: Arc::new(Field::new("default", DataType::Null)),
            chunks: Default::default(),
            phantom: PhantomData,
            categorical_map: None,
            bit_settings: 0,
        }
    }
}

/// FromIterator trait

impl<T> FromIterator<Option<T::Native>> for ChunkedArray<T>
where
    T: PolarsPrimitiveType,
{
    fn from_iter<I: IntoIterator<Item = Option<T::Native>>>(iter: I) -> Self {
        let iter = iter.into_iter();

        let arr: PrimitiveArray<T> = match iter.size_hint() {
            (a, Some(b)) if a == b => {
                // 2021-02-07: ~40% faster than builder.
                // It is unsafe because we cannot be certain that the iterators length can be trusted.
                // For most iterators that report the same upper bound as lower bound it is, but still
                // somebody can create an iterator that incorrectly gives those bounds.
                // This will not lead to UB, but will panic.
                #[cfg(feature = "performant")]
                unsafe {
                    let arr = PrimitiveArray::from_trusted_len_iter(iter);
                    assert_eq!(arr.len(), a);
                    arr
                }
                #[cfg(not(feature = "performant"))]
                PrimitiveArray::from_iter(iter)
            }
            _ => {
                // 2021-02-07: ~1.5% slower than builder. Will still use this as it is more idiomatic and will
                // likely improve over time.
                PrimitiveArray::from_iter(iter)
            }
        };
        ChunkedArray::new_from_chunks("", vec![Arc::new(arr)])
    }
}

// NoNull is only a wrapper needed for specialization
impl<T> FromIterator<T::Native> for NoNull<ChunkedArray<T>>
where
    T: PolarsPrimitiveType,
{
    // We use AlignedVec because it is way faster than Arrows builder. We can do this because we
    // know we don't have null values.
    fn from_iter<I: IntoIterator<Item = T::Native>>(iter: I) -> Self {
        let iter = iter.into_iter();
        #[cfg(feature = "performant")]
        {
            let len = iter.size_hint().0;
            let buffer = unsafe { Buffer::from_trusted_len_iter(iter) };

            let data = ArrayData::new(T::DATA_TYPE, len, None, None, 0, vec![buffer], vec![]);
            NoNull::new(ChunkedArray::new_from_chunks(
                "",
                vec![Arc::new(PrimitiveArray::<T>::from(data))],
            ))
        }
        #[cfg(not(feature = "performant"))]
        {
            // 2021-02-07: aligned vec was ~2x faster than arrow collect.
            let mut av = AlignedVec::with_capacity_aligned(0);
            av.extend(iter);
            NoNull::new(ChunkedArray::new_from_aligned_vec("", av))
        }
    }
}

impl FromIterator<Option<bool>> for ChunkedArray<BooleanType> {
    fn from_iter<I: IntoIterator<Item = Option<bool>>>(iter: I) -> Self {
        let arr = BooleanArray::from_iter(iter);
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl FromIterator<bool> for BooleanChunked {
    fn from_iter<I: IntoIterator<Item = bool>>(iter: I) -> Self {
        // 2021-02-07: this was ~70% faster than with the builder, even with the extra Option<T> added.
        let arr = BooleanArray::from_iter(iter.into_iter().map(Some));
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl FromIterator<bool> for NoNull<BooleanChunked> {
    fn from_iter<I: IntoIterator<Item = bool>>(iter: I) -> Self {
        let ca = iter.into_iter().collect::<BooleanChunked>();
        NoNull::new(ca)
    }
}

// FromIterator for Utf8Chunked variants.

impl<Ptr> FromIterator<Option<Ptr>> for Utf8Chunked
where
    Ptr: AsRef<str>,
{
    fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
        // 2021-02-07: this was ~30% faster than with the builder.
        let arr = LargeStringArray::from_iter(iter);
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

/// Local AsRef<T> trait to circumvent the orphan rule.
pub trait PolarsAsRef<T: ?Sized>: AsRef<T> {}

impl PolarsAsRef<str> for String {}
impl PolarsAsRef<str> for &str {}
// &["foo", "bar"]
impl PolarsAsRef<str> for &&str {}
impl<'a> PolarsAsRef<str> for Cow<'a, str> {}

impl<Ptr> FromIterator<Ptr> for Utf8Chunked
where
    Ptr: PolarsAsRef<str>,
{
    fn from_iter<I: IntoIterator<Item = Ptr>>(iter: I) -> Self {
        let arr = LargeStringArray::from_iter_values(iter);
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl<Ptr> FromIterator<Ptr> for ListChunked
where
    Ptr: Borrow<Series>,
{
    fn from_iter<I: IntoIterator<Item = Ptr>>(iter: I) -> Self {
        let mut it = iter.into_iter();
        let capacity = get_iter_capacity(&it);

        // first take one to get the dtype. We panic if we have an empty iterator
        let v = it.next().unwrap();
        // We don't know the needed capacity. We arbitrarily choose an average of 5 elements per series.
        let mut builder = get_list_builder(v.borrow().dtype(), capacity * 5, capacity, "collected");

        builder.append_series(v.borrow());
        for s in it {
            builder.append_series(s.borrow());
        }
        builder.finish()
    }
}

impl<Ptr> FromIterator<Option<Ptr>> for ListChunked
where
    Ptr: Borrow<Series>,
{
    fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
        let mut it = iter.into_iter();
        let owned_v;
        let mut cnt = 0;

        loop {
            let opt_v = it.next();

            match opt_v {
                Some(opt_v) => match opt_v {
                    Some(val) => {
                        owned_v = val;
                        break;
                    }
                    None => cnt += 1,
                },
                // end of iterator
                None => {
                    // type is not known
                    panic!("Type of Series cannot be determined as they are all null")
                }
            }
        }
        let v = owned_v.borrow();
        let capacity = get_iter_capacity(&it);
        let mut builder = get_list_builder(v.dtype(), capacity * 5, capacity, "collected");

        // first fill all None's we encountered
        while cnt > 0 {
            builder.append_opt_series(None);
            cnt -= 1;
        }

        // now the first non None
        builder.append_series(v);

        // now we have added all Nones, we can consume the rest of the iterator.
        for opt_s in it {
            match opt_s {
                Some(s) => builder.append_series(s.borrow()),
                None => builder.append_null(),
            }
        }

        builder.finish()
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> FromIterator<Option<T>> for ObjectChunked<T> {
    fn from_iter<I: IntoIterator<Item = Option<T>>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let size = iter.size_hint().0;
        let mut null_mask_builder = BooleanBufferBuilder::new(size);

        let mut null_count = 0;
        let values: Vec<T> = iter
            .map(|value| match value {
                Some(value) => {
                    null_mask_builder.append(true);
                    value
                }
                None => {
                    null_count += 1;
                    null_mask_builder.append(false);
                    T::default()
                }
            })
            .collect();

        let null_bit_buffer = null_mask_builder.finish();
        let null_bitmap = arrow::bitmap::Bitmap::from(null_bit_buffer);
        let null_bitmap = match null_count {
            0 => None,
            _ => Some(Arc::new(null_bitmap)),
        };

        let len = values.len();

        let arr = Arc::new(ObjectArray {
            values: Arc::new(values),
            null_bitmap,
            null_count,
            offset: 0,
            len,
        });
        ChunkedArray {
            field: Arc::new(Field::new("", DataType::Object(T::type_name()))),
            chunks: vec![arr],
            phantom: PhantomData,
            categorical_map: None,
            bit_settings: 0,
        }
    }
}

/// FromParallelIterator trait
// Code taken from https://docs.rs/rayon/1.3.1/src/rayon/iter/extend.rs.html#356-366
fn vec_push<T>(mut vec: Vec<T>, elem: T) -> Vec<T> {
    vec.push(elem);
    vec
}

fn as_list<T>(item: T) -> LinkedList<T> {
    let mut list = LinkedList::new();
    list.push_back(item);
    list
}

fn list_append<T>(mut list1: LinkedList<T>, mut list2: LinkedList<T>) -> LinkedList<T> {
    list1.append(&mut list2);
    list1
}

fn collect_into_linked_list<I>(par_iter: I) -> LinkedList<Vec<I::Item>>
where
    I: IntoParallelIterator,
{
    use crate::POOL;
    let it = par_iter.into_par_iter();
    if let Some(len) = it.opt_len() {
        it.fold(
            || Vec::with_capacity(len / POOL.current_num_threads()),
            vec_push,
        )
        .map(as_list)
        .reduce(LinkedList::new, list_append)
    } else {
        it.fold(Vec::new, vec_push)
            .map(as_list)
            .reduce(LinkedList::new, list_append)
    }
}

fn get_capacity_from_par_results<T>(ll: &LinkedList<Vec<T>>) -> usize {
    ll.iter().map(|list| list.len()).sum()
}

impl<T> FromParallelIterator<T::Native> for NoNull<ChunkedArray<T>>
where
    T: PolarsPrimitiveType,
{
    fn from_par_iter<I: IntoParallelIterator<Item = T::Native>>(iter: I) -> Self {
        // Get linkedlist filled with different vec result from different threads
        let vectors = collect_into_linked_list(iter);
        let capacity: usize = get_capacity_from_par_results(&vectors);

        let mut av = AlignedVec::with_capacity_aligned(capacity);
        for v in vectors {
            av.extend_from_slice(&v)
        }
        let arr = av.into_primitive_array::<T>(None);
        NoNull::new(ChunkedArray::new_from_chunks("", vec![Arc::new(arr)]))
    }
}

impl<T> FromParallelIterator<Option<T::Native>> for ChunkedArray<T>
where
    T: PolarsPrimitiveType,
{
    fn from_par_iter<I: IntoParallelIterator<Item = Option<T::Native>>>(iter: I) -> Self {
        // Get linkedlist filled with different vec result from different threads
        let vectors = collect_into_linked_list(iter);

        let capacity: usize = get_capacity_from_par_results(&vectors);
        // zeroed immediately correct for nulls
        let mut validity = MutableBuffer::from_len_zeroed(capacity.saturating_add(7) / 8);
        let mut values = AlignedVec::with_capacity_aligned(capacity);

        for vec in vectors {
            // Safety:
            // vec's length can be trusted
            unsafe { trusted_len_unzip_extend(vec.into_iter(), &mut values, &mut validity) }
        }
        let arr: PrimitiveArray<T> = values.into_primitive_array(Some(validity.into()));
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl FromParallelIterator<bool> for BooleanChunked {
    fn from_par_iter<I: IntoParallelIterator<Item = bool>>(iter: I) -> Self {
        let vectors = collect_into_linked_list(iter);

        let capacity: usize = get_capacity_from_par_results(&vectors);

        // 2021-02-07: this was ~70% faster than with the builder, even with the extra Option<T> added.
        let arr = BooleanArray::from_iter(
            vectors
                .into_iter()
                .flatten()
                .trust_my_length(capacity)
                .map(Some),
        );
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl<Ptr> FromParallelIterator<Ptr> for Utf8Chunked
where
    Ptr: PolarsAsRef<str> + Send + Sync,
{
    fn from_par_iter<I: IntoParallelIterator<Item = Ptr>>(iter: I) -> Self {
        let vectors = collect_into_linked_list(iter);
        let arr = LargeStringArray::from_iter_values(vectors.into_iter().flatten());
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

impl<Ptr> FromParallelIterator<Option<Ptr>> for Utf8Chunked
where
    Ptr: AsRef<str> + Send + Sync,
{
    fn from_par_iter<I: IntoParallelIterator<Item = Option<Ptr>>>(iter: I) -> Self {
        let vectors = collect_into_linked_list(iter);
        let arr = LargeStringArray::from_iter(vectors.into_iter().flatten());
        Self::new_from_chunks("", vec![Arc::new(arr)])
    }
}

/// From trait
impl<'a> From<&'a Utf8Chunked> for Vec<Option<&'a str>> {
    fn from(ca: &'a Utf8Chunked) -> Self {
        ca.into_iter().collect()
    }
}

impl From<Utf8Chunked> for Vec<Option<String>> {
    fn from(ca: Utf8Chunked) -> Self {
        ca.into_iter()
            .map(|opt| opt.map(|s| s.to_string()))
            .collect()
    }
}

impl<'a> From<&'a BooleanChunked> for Vec<Option<bool>> {
    fn from(ca: &'a BooleanChunked) -> Self {
        ca.into_iter().collect()
    }
}

impl From<BooleanChunked> for Vec<Option<bool>> {
    fn from(ca: BooleanChunked) -> Self {
        ca.into_iter().collect()
    }
}

impl<'a, T> From<&'a ChunkedArray<T>> for Vec<Option<T::Native>>
where
    T: PolarsNumericType,
{
    fn from(ca: &'a ChunkedArray<T>) -> Self {
        ca.into_iter().collect()
    }
}

#[cfg(test)]
mod test {
    use crate::prelude::*;

    #[test]
    fn test_collect_into_list() {
        let s1 = Series::new("", &[true, false, true]);
        let s2 = Series::new("", &[true, false, true]);

        let ll: ListChunked = [&s1, &s2].iter().copied().collect();
        assert_eq!(ll.len(), 2);
        assert_eq!(ll.null_count(), 0);
        let ll: ListChunked = [None, Some(s2)].iter().map(|opt| opt.as_ref()).collect();
        assert_eq!(ll.len(), 2);
        assert_eq!(ll.null_count(), 1);
    }
}