1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#[cfg(feature = "object")]
use crate::chunked_array::object::builder::ObjectChunkedBuilder;
use crate::prelude::*;
use crate::utils::align_chunks_binary;
#[cfg(feature = "object")]
use arrow::array::Array;
use arrow::compute::filter as filter_fn;
use std::ops::Deref;

macro_rules! check_filter_len {
    ($self:expr, $filter:expr) => {{
        if $self.len() != $filter.len() {
            return Err(PolarsError::ShapeMisMatch(
                format!(
                    "Filter's length differs from that of the ChunkedArray/ Series. \
                Length Self: {} Length mask: {}\
                Self: {:?}; mask: {:?}",
                    $self.len(),
                    $filter.len(),
                    $self,
                    $filter
                )
                .into(),
            ));
        }
    }};
}

impl<T> ChunkFilter<T> for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<T>> {
        // broadcast
        if filter.len() == 1 {
            return match filter.get(0) {
                Some(true) => Ok(self.clone()),
                _ => Ok(ChunkedArray::new_from_slice(self.name(), &[])),
            };
        }
        check_filter_len!(self, filter);
        let (left, filter) = align_chunks_binary(self, filter);

        let chunks = left
            .downcast_iter()
            .zip(filter.downcast_iter())
            .map(|(left, mask)| filter_fn(left, mask).unwrap())
            .collect::<Vec<_>>();
        Ok(ChunkedArray::new_from_chunks(self.name(), chunks))
    }
}

impl ChunkFilter<BooleanType> for BooleanChunked {
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<BooleanType>> {
        // broadcast
        if filter.len() == 1 {
            return match filter.get(0) {
                Some(true) => Ok(self.clone()),
                _ => Ok(ChunkedArray::new_from_slice(self.name(), &[])),
            };
        }
        check_filter_len!(self, filter);
        let (left, filter) = align_chunks_binary(self, filter);

        let chunks = left
            .downcast_iter()
            .zip(filter.downcast_iter())
            .map(|(left, mask)| filter_fn(left, mask).unwrap())
            .collect::<Vec<_>>();
        Ok(ChunkedArray::new_from_chunks(self.name(), chunks))
    }
}

impl ChunkFilter<Utf8Type> for Utf8Chunked {
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<Utf8Type>> {
        // broadcast
        if filter.len() == 1 {
            return match filter.get(0) {
                Some(true) => Ok(self.clone()),
                _ => Ok(self.slice(0, 0)),
            };
        }
        check_filter_len!(self, filter);
        let (left, filter) = align_chunks_binary(self, filter);

        let chunks = left
            .downcast_iter()
            .zip(filter.downcast_iter())
            .map(|(left, mask)| filter_fn(left, mask).unwrap())
            .collect::<Vec<_>>();
        Ok(ChunkedArray::new_from_chunks(self.name(), chunks))
    }
}

impl ChunkFilter<CategoricalType> for CategoricalChunked {
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<CategoricalType>>
    where
        Self: Sized,
    {
        let ca: CategoricalChunked = self.deref().filter(filter)?.cast()?;
        Ok(ca.set_state(self))
    }
}

impl ChunkFilter<ListType> for ListChunked {
    fn filter(&self, filter: &BooleanChunked) -> Result<ListChunked> {
        // broadcast
        if filter.len() == 1 {
            return match filter.get(0) {
                Some(true) => Ok(self.clone()),
                _ => Ok(self.slice(0, 0)),
            };
        }
        let (left, filter) = align_chunks_binary(self, filter);

        let chunks = left
            .downcast_iter()
            .zip(filter.downcast_iter())
            .map(|(left, mask)| filter_fn(left, mask).unwrap())
            .collect::<Vec<_>>();
        Ok(ChunkedArray::new_from_chunks(self.name(), chunks))
    }
}

#[cfg(feature = "object")]
impl<T> ChunkFilter<ObjectType<T>> for ObjectChunked<T>
where
    T: 'static + std::fmt::Debug + Clone + Send + Sync + Default,
{
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<ObjectType<T>>>
    where
        Self: Sized,
    {
        // broadcast
        if filter.len() == 1 {
            return match filter.get(0) {
                Some(true) => Ok(self.clone()),
                _ => Ok(ObjectChunked::new_from_chunks(self.name(), vec![])),
            };
        }
        if self.is_empty() {
            return Err(PolarsError::NoData(
                "cannot filter empty object array".into(),
            ));
        }
        let chunks = self.downcast_iter().collect::<Vec<_>>();
        let mut builder = ObjectChunkedBuilder::<T>::new(self.name(), self.len());
        for (idx, mask) in filter.into_iter().enumerate() {
            if mask.unwrap_or(false) {
                let (chunk_idx, idx) = self.index_to_chunked_index(idx);
                unsafe {
                    let arr = chunks.get_unchecked(chunk_idx);
                    match arr.is_null(idx) {
                        true => builder.append_null(),
                        false => {
                            let v = arr.value(idx);
                            builder.append_value(v.clone())
                        }
                    }
                }
            }
        }
        Ok(builder.finish())
    }
}