1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use crate::trusted_len::TrustedLen;
use crate::utils::FromTrustedLenIterator;
use arrow::alloc;
use arrow::array::{ArrayData, PrimitiveArray};
use arrow::buffer::{Buffer, MutableBuffer};
use arrow::datatypes::*;
use std::iter::FromIterator;
use std::mem;
use std::mem::ManuallyDrop;

/// A `Vec` wrapper with a memory alignment equal to Arrow's primitive arrays.
/// Can be useful in creating a new ChunkedArray or Arrow Primitive array without copying.
#[derive(Debug)]
pub struct AlignedVec<T: ArrowNativeType> {
    pub inner: Vec<T>,
    // if into_inner is called, this will be true and we can use the default Vec's destructor
    taken: bool,
}

impl<T: ArrowNativeType> Drop for AlignedVec<T> {
    fn drop(&mut self) {
        if !self.taken {
            let inner = mem::take(&mut self.inner);
            let mut me = mem::ManuallyDrop::new(inner);
            let ptr: *mut T = me.as_mut_ptr();
            let ptr = ptr as *mut u8;
            let ptr = std::ptr::NonNull::new(ptr).unwrap();
            unsafe { alloc::free_aligned::<u8>(ptr, me.capacity() * mem::size_of::<T>()) }
        }
    }
}

impl<T: ArrowNativeType> FromIterator<T> for AlignedVec<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let sh = iter.size_hint();
        let size = sh.1.unwrap_or(sh.0);

        let mut av = Self::with_capacity_aligned(size);
        av.extend(iter);

        // Iterator size hint wasn't correct and reallocation has occurred
        assert!(av.len() <= size);
        av
    }
}

impl<T: Copy + ArrowNativeType> AlignedVec<T> {
    /// Uses a memcpy to initialize this AlignedVec
    pub fn new_from_slice(other: &[T]) -> Self {
        let len = other.len();
        let mut av = Self::with_capacity_aligned(len);
        unsafe {
            // Safety:
            // we set initiate the memory after this with a memcpy.
            av.set_len(len);
        }
        av.inner.copy_from_slice(other);
        av
    }
}

impl<T: Clone + ArrowNativeType> AlignedVec<T> {
    pub fn resize(&mut self, new_len: usize, value: T) {
        self.inner.resize(new_len, value)
    }

    pub fn extend_from_slice(&mut self, other: &[T]) {
        let remaining_cap = self.capacity() - self.len();
        let needed_cap = other.len();
        // exponential allocation
        if needed_cap > remaining_cap {
            self.reserve(std::cmp::max(needed_cap, self.capacity()));
        }
        self.inner.extend_from_slice(other)
    }
}

impl<T: ArrowNativeType> AlignedVec<T> {
    /// Create a new Vec where first bytes memory address has an alignment of 64 bytes, as described
    /// by arrow spec.
    /// Read more:
    /// <https://github.com/rust-ndarray/ndarray/issues/771>
    pub fn with_capacity_aligned(size: usize) -> Self {
        // Can only have a zero copy to arrow memory if address of first byte % 64 == 0
        let t_size = std::mem::size_of::<T>();
        let capacity = size * t_size;
        let ptr = alloc::allocate_aligned::<u8>(capacity).as_ptr() as *mut T;
        let v = unsafe { Vec::from_raw_parts(ptr, 0, size) };
        AlignedVec {
            inner: v,
            taken: false,
        }
    }

    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        let mut me = ManuallyDrop::new(mem::take(&mut self.inner));
        let ptr = me.as_mut_ptr() as *mut u8;
        let ptr = std::ptr::NonNull::new(ptr).unwrap();
        let t_size = mem::size_of::<T>();
        let cap = me.capacity();
        let old_capacity = t_size * cap;
        let new_capacity = old_capacity + t_size * additional;
        let ptr = unsafe { alloc::reallocate::<u8>(ptr, old_capacity, new_capacity) };
        let ptr = ptr.as_ptr() as *mut T;
        let v = unsafe { Vec::from_raw_parts(ptr, me.len(), cap + additional) };
        self.inner = v;
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Create a new aligned vec from a ptr.
    ///
    /// # Safety
    /// The ptr should be 64 byte aligned and `len` and `capacity` should be correct otherwise it is UB.
    pub unsafe fn from_ptr(ptr: usize, len: usize, capacity: usize) -> Self {
        assert_eq!((ptr as usize) % alloc::ALIGNMENT, 0);
        let ptr = ptr as *mut T;
        let v = Vec::from_raw_parts(ptr, len, capacity);
        Self {
            inner: v,
            taken: false,
        }
    }

    /// Take ownership of the Vec. This is UB because the destructor of Vec<T> probably has a different
    /// alignment than what we allocated.
    ///
    /// Only used for inner workings
    unsafe fn into_inner(mut self) -> Vec<T> {
        if self.taken {
            eprintln!("inner vec was already taken: UB");
            std::process::abort()
        }
        self.taken = true;
        mem::take(&mut self.inner)
    }

    /// Push at the end of the Vec. This is unsafe because a push when the capacity of the
    /// inner Vec is reached will reallocate the Vec without the alignment, leaving this destructor's
    /// alignment incorrect
    #[inline]
    pub fn push(&mut self, value: T) {
        if self.inner.len() == self.capacity() {
            // exponential allocation
            self.reserve(std::cmp::max(self.capacity(), 5));
        }
        self.inner.push(value)
    }

    /// Set the length of the underlying `Vec`.
    ///
    /// # Safety
    ///
    /// - `new_len` must be less than or equal to `capacity`.
    /// - The elements at `old_len..new_len` must be initialized.
    #[inline]
    pub unsafe fn set_len(&mut self, new_len: usize) {
        self.inner.set_len(new_len);
    }

    #[inline]
    pub fn as_ptr(&self) -> *const T {
        self.inner.as_ptr()
    }

    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.inner.as_mut_ptr()
    }

    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self.inner.as_mut_slice()
    }

    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self.inner.as_slice()
    }

    #[inline]
    pub fn capacity(&self) -> usize {
        self.inner.capacity()
    }

    pub fn shrink_to_fit(&mut self) {
        if self.capacity() > self.len() && !self.is_empty() {
            let mut me = ManuallyDrop::new(mem::take(&mut self.inner));
            let ptr = me.as_mut_ptr() as *mut u8;
            let ptr = std::ptr::NonNull::new(ptr).unwrap();

            let t_size = mem::size_of::<T>();
            let new_size = t_size * me.len();
            let old_size = t_size * me.capacity();
            let v = unsafe {
                let ptr = alloc::reallocate::<u8>(ptr, old_size, new_size).as_ptr() as *mut T;
                Vec::from_raw_parts(ptr, me.len(), me.len())
            };

            self.inner = v;
        }
    }

    /// Transform this array to an Arrow Buffer.
    pub fn into_arrow_buffer(self) -> Buffer {
        if self.is_empty() && self.capacity() == 0 {
            MutableBuffer::new(0).into()
        } else {
            let values = unsafe { self.into_inner() };

            let me = mem::ManuallyDrop::new(values);
            let ptr = me.as_ptr() as *mut u8;
            let len = me.len() * std::mem::size_of::<T>();
            let capacity = me.capacity() * std::mem::size_of::<T>();
            debug_assert_eq!((ptr as usize) % 64, 0);
            let ptr = std::ptr::NonNull::new(ptr).unwrap();

            unsafe { Buffer::from_raw_parts(ptr, len, capacity) }
        }
    }

    pub fn into_primitive_array<A: ArrowPrimitiveType>(
        self,
        null_buf: Option<Buffer>,
    ) -> PrimitiveArray<A> {
        debug_assert_eq!(mem::size_of::<A::Native>(), mem::size_of::<T>());

        let vec_len = self.len();
        let buffer = self.into_arrow_buffer();

        let mut builder = ArrayData::builder(A::DATA_TYPE)
            .len(vec_len)
            .add_buffer(buffer);

        if let Some(buf) = null_buf {
            builder = builder.null_bit_buffer(buf);
        }
        let data = builder.build();

        PrimitiveArray::<A>::from(data)
    }

    fn reserve_from_size_hint(&mut self, size: usize) {
        let (extra_cap, overflow) = size.overflowing_sub(self.capacity());
        if extra_cap > 0 && !overflow {
            self.reserve(extra_cap);
        }
    }

    /// # Panic
    /// Must be a trusted len iterator or else it will panic
    pub fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let iter = iter.into_iter();
        let cap = iter.size_hint().1.expect("a trusted length iterator");
        self.reserve_from_size_hint(cap);
        let len_before = self.len();
        self.inner.extend(iter);
        let added = self.len() - len_before;
        if added != cap {
            eprintln!("size hint was incorrect, this is UB. aborting");
            std::process::abort()
        }
    }

    /// Extend this Vector with an iterator whose length can be trusted.
    ///
    /// # Safety
    /// - iterator must be TrustedLen
    pub unsafe fn extend_trusted_len_unchecked<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let iter = iter.into_iter();
        let iter_len = iter.size_hint().1.expect("a trusted length iterator");
        self.reserve_from_size_hint(iter_len);

        let mut dst = self.inner.as_ptr() as *mut T;
        dst = dst.add(self.len());
        let start = dst;
        for item in iter {
            // note how there is no reserve here
            std::ptr::write(dst, item);
            dst = dst.add(1);
        }
        assert_eq!(
            dst.offset_from(start) as usize,
            iter_len,
            "Trusted iterator length was not accurately reported"
        );
        self.inner.set_len(self.len() + iter_len)
    }

    pub fn extend_trusted_len<I: IntoIterator<Item = T> + TrustedLen>(&mut self, iter: I) {
        unsafe { self.extend_trusted_len_unchecked(iter) }
    }
}

impl<T: ArrowNativeType> Default for AlignedVec<T> {
    fn default() -> Self {
        // Be careful here. Don't initialize with a normal Vec as this will cause the wrong deallocator
        // to run and SIGSEGV
        Self::with_capacity_aligned(0)
    }
}

impl<T: ArrowNativeType> FromTrustedLenIterator<T> for AlignedVec<T> {
    fn from_iter_trusted_length<I: IntoIterator<Item = T>>(iter: I) -> Self
    where
        I::IntoIter: TrustedLen,
    {
        let iter = iter.into_iter();
        let len = iter.size_hint().0;
        // Safety:
        // trait trustedlen
        let buf = unsafe { MutableBuffer::from_trusted_len_iter(iter) };
        let ptr = buf.as_ptr() as usize;
        let capacity = buf.capacity() / std::mem::size_of::<T>();
        std::mem::forget(buf);
        unsafe { AlignedVec::from_ptr(ptr, len, capacity) }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use arrow::alloc;

    #[test]
    fn test_aligned_vec_allocations() {
        // Can only have a zero copy to arrow memory if address of first byte % 64 == 0
        // check if we can increase above initial capacity and keep the Arrow alignment
        let mut v = AlignedVec::with_capacity_aligned(2);
        v.push(1);
        v.push(2);
        v.push(3);
        v.push(4);

        let ptr = v.as_ptr();
        assert_eq!((ptr as usize) % alloc::ALIGNMENT, 0);

        // check if we can shrink to fit
        let mut v = AlignedVec::with_capacity_aligned(10);
        v.push(1);
        v.push(2);
        v.shrink_to_fit();
        assert_eq!(v.len(), 2);
        assert_eq!(v.capacity(), 2);
        let ptr = v.as_ptr();
        assert_eq!((ptr as usize) % alloc::ALIGNMENT, 0);

        let a = v.into_primitive_array::<Int32Type>(None);
        assert_eq!(&a.values()[..2], &[1, 2])
    }

    #[test]
    fn test_trusted_len() {
        let av = AlignedVec::from_iter_trusted_length([1, 2, 3, 4, 5].iter().copied());
        let v: Vec<_> = av.inner.iter().copied().collect();
        assert_eq!(v, &[1, 2, 3, 4, 5]);
    }
}