1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*!
A simple and flexible multidimensional point struct, based on an array.
See the ```PointND``` struct for basic usage
*/
use std::{
ops::{
Deref, DerefMut,
Add, Sub, Mul, Div,
AddAssign, SubAssign, MulAssign, DivAssign,
Neg
}
};
/**
The whole _point_ of the crate
Think of this as an array with convenience methods for accessing values if it's dimensions are
within ```1..=4```, i.e - all methods implemented for arrays are available with this
# Making a Point
```
# use point_nd::PointND;
// Creating a 2D point from a given array
let arr: [i32; 2] = [0,1];
let p: PointND<_, 2> = PointND::new(arr);
// Creating a 3D point from values of a given slice
let vec: Vec<i32> = vec![0, 1, 2];
let p: PointND<_, 3> = PointND::from(&vec);
// Creating a 4D point with all values set to 5
let p: PointND<i32, 4> = PointND::fill(5);
// The second generic arg is a usize constant and for the ::fill()
// and ::from() functions, specifying it is sometimes necessary
// If you don't like writing PointND twice for type annotation,
// use FQS (fully qualified syntax) instead:
let p = PointND::<_, 4>::fill(5);
// Trying to create a PointND with zero dimensions using the above will panic at runtime
// ERROR: Can't create a point with zero dimensions
// let p: PointND<_, 0> = PointND::new([]);
```
# Getting and Setting Values
If the dimensions of the point are within ```1..=4```, it is recommended to use the convenience getters and setters
```
# use point_nd::PointND;
let arr = [0,1];
let p: PointND<_, 2> = PointND::new(arr);
// As the point has 2 dimensions, we can access
// it's values with the x() and y() methods
let x: &i32 = p.x();
assert_eq!(*x, arr[0]);
let y = p.y();
assert_eq!(*y, arr[1]);
// If the point had 3 dimensions, we could use the above and:
// let z = p.z();
// Or with 4 dimensions, the above and:
// let w = p.w();
// Setting values is just as simple
let mut p = PointND::new(arr);
p.set_x(101);
assert_eq!(*p.x(), 101);
// As with the getters, there are respective methods for setting the
// values at y, z and w depending on the dimensions of the point
```
Alternatively, since ```PointND``` implements ```Deref```, all methods of getting and setting array elements can work as well
These are the only methods available for ```PointND```'s with dimensions **not** within ```1..=4```
Their use can be made easier using the dimension macros: ```dim```, ```dims``` and ```dimr``` (see their documentation for more info)
```
# use point_nd::PointND;
// A 5D point, cannot use any of the convenience methods
let arr = [-2, -1, 0, 1, 2];
let mut p = PointND::new(arr);
// ERROR: Not implemented for PointND<i32, 5>
// let x = p.x()
// ...
// let w = p.w();
// Instead use these deref array methods:
// Safely getting
let x: Option<&i32> = p.get(0);
assert_eq!(*x.unwrap(), arr[0]);
// Indexing
let y: i32 = p[1];
assert_eq!(y, arr[1]);
// Slicing
let z_to_last: &[i32] = &p[2..];
assert_eq!(z_to_last, [0,1,2]);
// Setting via Indexing
p[1] = 345;
assert_eq!(p[1], 345);
```
# Querying Size
The number of dimensions can be retrieved using the ```dims()``` method (short for _dimensions_)
```
# use point_nd::PointND;
let p: PointND<i32, 2> = PointND::new([0,1]);
assert_eq!(p.dims(), 2);
// Alternatively, as PointND implements Deref, we can use len().
// It's name isn't as descriptive however
assert_eq!(p.len(), 2);
```
# Iterating
Iterating over a ```PointND``` is as easy as:
```
# use point_nd::PointND;
let mut p = PointND::new([0,1]);
for _ in p.iter() { /* Do stuff */ }
for _ in p.iter_mut() { /* Change stuff */ }
for _ in p.into_iter() { /* Do more stuff */ }
```
It must be noted that due to the ```Copy``` trait bounds of the items contained by a ```PointND```,
using ```into_iter()``` will not actually move the point as we are actually iterating over the contained
array via the ```Deref``` trait.
```
# use point_nd::PointND;
# let mut p = PointND::new([0,1]);
// The point 'p' is still usable after the call to into_iter()
assert_eq!(p.dims(), 2);
```
If destroying innocent points is your thing however, using ```into_arr()``` or ```into_vec()``` to
consume the point before iterating will move it out of scope
```
# use point_nd::PointND;
# let mut p = PointND::new([0,1]);
for _ in p.into_vec().into_iter() { /* Do stuff */ }
// ERROR: Can't access moved value
// assert_eq!(p.dims(), 2);
```
# Transforming Points
### Appliers
The ```apply```, ```apply_vals```, ```apply_dims``` and ```apply_point``` (henceforth referred to as _appliers_)
methods all consume self and return a new point after applying a function to all contained values
Multiple appliers can be chained together to make complex transformations to a ```PointND```
This is probably best explained with an example:
```
# use point_nd::PointND;
# fn apply_example() -> Result<(), ()> {
// A trivial transformation more easily done via other methods...
// but it gets the point across
let p = PointND
::new([0,1,2]) // Creates a new PointND
.apply(|item| Ok( item + 2 ))? // Adds 2 to each item
.apply(|item| Ok( item * 3 ))?; // Multiplies each item by 3
assert_eq!(p.into_arr(), [6, 9, 12]);
# Ok(())
# }
```
### Creating a Function to Pass to Appliers
The function or closure passed to the applier methods (henceforth referred to as _modifiers_)
accept either one or two args of type ```T``` (where ```T``` is the type of the items contained
by the point) depending on whether one or two sets of values are being modified.
Modifiers must all return a ```Result<T, ()>``` to allow graceful error handling by the applier instead of just panicking.
If an ```Err``` is returned by the modifier when called on any item, the applier returns an ```Err(())```
If all goes well, the applier returns an ```Ok``` with the new ```PointND``` as it's value
Hopefully the above wasn't confusing, but here's an example just in case:
```
# use point_nd::PointND;
# fn modifier_creation_example() -> Result<(), ()> {
// Dividing by zero causes a runtime error, so we return an Err if the second arg is zero
let divide_items = |a: f32, b: f32| -> Result<f32, ()> {
if b == 0.0 {
Err(())
} else {
Ok( a / b )
}
};
let p1 = PointND::new([-1.2, 2.0, -3.0, 4.5]);
let p2 = PointND::new([2.3, 9.0, -3.0, 1.0]);
let zero_point = PointND::fill(0.0);
// Divides each item in p1 with each in p2
let result = p1.clone().apply_point(p2, divide_items);
// No zeros in p2, so everything's Ok
assert!(result.is_ok());
// Divides each item in p1 with each in zero_point
let result = p1.apply_point(zero_point, divide_items);
// Error is thrown by divide_items, causing apply_point() to throw error
assert!(result.is_err());
# Ok(())
# }
```
*/
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct PointND<T, const N: usize>([T; N])
where T: Clone + Copy + Default;
impl<T, const N: usize> PointND<T, N>
where T: Clone + Copy + Default {
/**
Returns a new ```PointND``` with values from the specified array
This is the only constructor that does not ever need type annotation
### Panics
If the length of the array is zero
*/
pub fn new(arr: [T; N]) -> Self {
if arr.len() == 0 {
panic!("Cannot construct PointND with zero dimensions");
}
PointND(arr)
}
/**
Returns a new ```PointND``` with values from the specified slice
This constructor is probably only useful when ```Vec```'s of unknown length are
the only collections available
If the compiler is not able to infer the dimensions (a.k.a - length)
of the point, it needs to be explicitly specified
```
# use point_nd::PointND;
// Explicitly specifying dimensions
let p = PointND::<_, 3>::from(&vec![0,1,2]);
// The generics don't always have to be specified though, for example
let p1 = PointND::new([0,1]); // Compiler knows this has 2 dimensions
let p2 = PointND::from(&vec![2,3]);
// Later, p2 is added to p1. The compiler is able to infer its dimensions
let p = p1 + p2;
```
### Panics
If the length of the slice is zero
If the slice passed cannot be converted into an array
*/
pub fn from(slice: &[T]) -> Self {
let arr: [T; N] = slice.try_into().unwrap();
PointND::new(arr)
}
/**
Returns a new ```PointND``` with all values set as specified
If the compiler is not able to infer the dimensions (a.k.a - length)
of the point, it needs to be explicitly specified
See the ```from()``` function for cases when generics don't need to be explicitly specified
```
# use point_nd::PointND;
// A point with 10 dimensions with all values set to 2
let p = PointND::<_, 10>::fill(2);
assert_eq!(p.dims(), 10);
for i in p.into_iter() {
assert_eq!(i, 2);
}
```
### Panics
If the dimensions of the point being constructed is zero
*/
pub fn fill(value: T) -> Self {
PointND::<T, N>::from(&[value; N])
}
/**
Returns the number of dimensions of the point (a 2D point will return 2, a 3D point 3, _etc_)
Equivalent to calling ```len()```
*/
pub fn dims(&self) -> usize {
self.len()
}
/**
Safe method of setting values
Sets value at index ```i``` to ```new_val``` and returns ```Ok```. If the index specified was out of range, does nothing and returns ```Err```
This is probably only useful if dealing with ```PointND```'s of differing dimensions at once
```
# use point_nd::PointND;
let mut p = PointND::new([0,1]);
// Setting an item within bounds, returns Ok
let result = p.set(0, 21);
assert!(result.is_ok());
// Setting an item out of bounds, returns Err
let result = p.set(1000000, 4);
assert!(result.is_err());
```
*/
pub fn set(&mut self, i: usize, new_val: T) -> Result<(), ()> {
if self.dims() < i { return Err(()) }
self[i] = new_val;
Ok(())
}
/**
Consumes ```self``` and calls the ```modifier``` on each item contained by ```self``` to create a new ```PointND```
```
# use point_nd::PointND;
# fn apply_example() -> Result<(), ()> {
let p = PointND
::new([0,1,2]) // Creates a new PointND
.apply(|item| Ok( item + 2 ))? // Adds 2 to each item
.apply(|item| Ok( item * 3 ))?; // Multiplies each item by 3
assert_eq!(p.into_arr(), [6, 9, 12]);
# Ok(())
# }
```
*/
// Did not call apply_dims() inside this to avoid the dimension checks it does
pub fn apply<F>(self, modifier: F) -> Result<Self, ()>
where F: Fn(T) -> Result<T, ()> {
let mut arr = [T::default(); N];
for i in 0..N {
arr[i] = modifier(self[i])?;
}
Ok( PointND::new(arr) )
}
/**
Consumes ```self``` and calls the ```modifier``` on the items at the specified ```dims``` to create a new ```PointND```
Any items at dimensions not specified will be passed to the new point as is
```
# use point_nd::PointND;
# fn apply_dims_example() -> Result<(), ()> {
let p = PointND
::new([0,1,2,3]) // Creates a new PointND
.apply_dims(&[1,3], |item| Ok( item * 2 ))? // Multiplies items 1 and 3 by 2
.apply_dims(&[0,2], |item| Ok( item + 10 ))?; // Adds 10 to items 0 and 2
assert_eq!(p.into_arr(), [10, 2, 20, 6]);
# Ok(())
# }
```
*/
pub fn apply_dims<F>(self, dims: &[usize], modifier: F) -> Result<Self, ()>
where F: Fn(T) -> Result<T, ()> {
let mut arr = [T::default(); N];
for i in 0..N {
if dims.contains(&i) {
arr[i] = modifier(self[i])?;
} else {
arr[i] = self[i];
}
}
Ok( PointND::new(arr) )
}
/**
Consumes ```self``` and calls the ```modifier``` on each item contained
by ```self``` and ```values``` to create a new ```PointND```
When creating a modifier function to be used by this method, keep in mind that the items in
```self``` are passed to it through the **first arg**, and the items in ```value``` through the **second**
```
# use point_nd::PointND;
# fn apply_vals_example() -> Result<(), ()> {
let p = PointND
::new([0,1,2]) // Creates a new PointND
.apply_vals([1,3,5], |a, b| Ok( a + b ))? // Adds items in point to items in array
.apply_vals([2,4,6], |a, b| Ok( a * b ))?; // Multiplies items in point
// to items in array
assert_eq!(p.into_arr(), [2, 16, 42]);
# Ok(())
# }
```
*/
pub fn apply_vals<F>(self, values: [T; N], modifier: F) -> Result<Self, ()>
where F: Fn(T, T) -> Result<T, ()> {
let mut arr = [T::default(); N];
for i in 0..N {
arr[i] = modifier(self[i], values[i])?;
}
Ok( PointND::new(arr) )
}
/**
Consumes ```self``` and calls the ```modifier``` on each item contained by ```self``` and another ```PointND``` to create a new point
When creating a modifier function to be used by this method, keep in mind that the items in
```self``` are passed to it through the **first arg**, and the items in ```other``` through the **second**
```
# use point_nd::PointND;
# fn apply_point_example() -> Result<(), ()> {
let p1 = PointND::new([0,9,3,1]);
let p2 = PointND::fill(10);
let p3 = PointND
::new([1,2,3,4]) // Creates a new PointND
.apply_point(p1, |a, b| Ok ( a - b ))? // Subtracts items in p3 with those in p1
.apply_point(p2, |a, b| Ok ( a * b ))?; // Multiplies items in the returned point
// with the items in p2
assert_eq!(p3.into_arr(), [10, -70, 0, 30]);
# Ok(())
# }
```
*/
pub fn apply_point<F>(self, other: Self, modifier: F) -> Result<Self, ()>
where F: Fn(T, T) -> Result<T, ()> {
self.apply_vals(other.into_arr(), modifier)
}
/// Consumes ```self```, returning the contained array
pub fn into_arr(self) -> [T; N] {
*self
}
/// Consumes ```self```, returning the contained array as a vector
pub fn into_vec(self) -> Vec<T> {
Vec::from(&self[..])
}
}
// Deref
impl<T, const N: usize> Deref for PointND<T, N>
where T: Clone + Copy + Default {
type Target = [T; N];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T, const N: usize> DerefMut for PointND<T, N>
where T: Clone + Copy + Default {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
// Math operators
// Negation
impl<T, const N: usize> Neg for PointND<T, N>
where T: Clone + Copy + Default + Neg<Output = T> {
type Output = Self;
fn neg(self) -> Self::Output {
let mut arr = self.into_arr();
for i in 0..N {
arr[i] = -arr[i]
}
PointND::new(arr)
}
}
// Arithmetic
impl<T, const N: usize> Add for PointND<T, N>
where T: Add<Output = T> + Clone + Copy + Default {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut arr = self.into_arr();
for i in 0..N {
arr[i] = arr[i] + rhs[i];
}
PointND::new(arr)
}
}
impl<T, const N: usize> Sub for PointND<T, N>
where T: Sub<Output = T> + Clone + Copy + Default {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut arr = self.into_arr();
for i in 0..N {
arr[i] = arr[i] - rhs[i];
}
PointND::new(arr)
}
}
impl<T, const N: usize> Mul for PointND<T, N>
where T: Mul<Output = T> + Clone + Copy + Default {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let mut arr = self.into_arr();
for i in 0..N {
arr[i] = arr[i] * rhs[i];
}
PointND::new(arr)
}
}
/**
### Warning
Dividing by a ```PointND``` that contains a zero will cause a panic
*/
impl<T, const N: usize> Div for PointND<T, N>
where T: Div<Output = T> + Clone + Copy + Default {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
let mut arr = self.into_arr();
for i in 0..N {
arr[i] = arr[i] / rhs[i];
}
PointND::new(arr)
}
}
// Arithmetic Assign
impl<T, const N: usize> AddAssign for PointND<T, N>
where T: AddAssign + Clone + Copy + Default {
fn add_assign(&mut self, rhs: Self) {
for i in 0..N {
self[i] += rhs[i];
}
}
}
impl<T, const N: usize> SubAssign for PointND<T, N>
where T: SubAssign + Clone + Copy + Default {
fn sub_assign(&mut self, rhs: Self) {
for i in 0..N {
self[i] -= rhs[i];
}
}
}
impl<T, const N: usize> MulAssign for PointND<T, N>
where T: MulAssign + Clone + Copy + Default {
fn mul_assign(&mut self, rhs: Self) {
for i in 0..N {
self[i] *= rhs[i];
}
}
}
/**
### Warning
Dividing by a ```PointND``` that contains a zero will cause a panic
*/
impl<T, const N: usize> DivAssign for PointND<T, N>
where T: DivAssign + Clone + Copy + Default {
fn div_assign(&mut self, rhs: Self) {
for i in 0..N {
self[i] /= rhs[i];
}
}
}
// Convenience Getters and Setters
/// ### 1D
/// Functions for safely getting and setting the value contained by a 1D ```PointND```
impl<T> PointND<T, 1>
where T: Clone + Copy + Default {
pub fn x(&self) -> &T { &self[0] }
pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
}
/// ### 2D
/// Functions for safely getting and setting the values contained by a 2D ```PointND```
impl<T> PointND<T, 2>
where T: Clone + Copy + Default {
pub fn x(&self) -> &T { &self[0] }
pub fn y(&self) -> &T { &self[1] }
pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }
}
/// ### 3D
/// Functions for safely getting and setting the values contained by a 3D ```PointND```
impl<T> PointND<T, 3>
where T: Clone + Copy + Default {
pub fn x(&self) -> &T { &self[0] }
pub fn y(&self) -> &T { &self[1] }
pub fn z(&self) -> &T { &self[2] }
pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }
pub fn set_z(&mut self, new_value: T) { self[2] = new_value; }
}
/// ### 4D
/// Functions for safely getting and setting the values contained by a 4D ```PointND```
impl<T> PointND<T, 4>
where T: Clone + Copy + Default {
pub fn x(&self) -> &T { &self[0] }
pub fn y(&self) -> &T { &self[1] }
pub fn z(&self) -> &T { &self[2] }
pub fn w(&self) -> &T { &self[3] }
pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }
pub fn set_z(&mut self, new_value: T) { self[2] = new_value; }
pub fn set_w(&mut self, new_value: T) { self[3] = new_value; }
}
// Dimension Macros
/**
Converts an identifier _x_, _y_, _z_ or _w_ to a usize value for indexing
Using any identifier apart from the above or multiple identifiers will result in a compile time error
It is recommended to use parentheses when calling this macro for clarity
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::dim;
let x_index: usize = dim!(x);
assert_eq!(x_index, 0usize);
let y_index = dim!(y);
assert_eq!(y_index, 1usize);
// ERROR: Only allowed to use one of x, y, z or w
// let fifth_dimension = dim!(v);
// ERROR: Only accepts one identifier
// If multiple dimensions are what you need, see the dims macro
// let sixth_and_seventh = dim!(u, t);
# }
```
This can be especially useful for indexing a ```PointND``` (or any collection indexable with a usize)
If a dimension is passed that is out of bounds, it will result in a compile time error
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::{dim, PointND};
let p = PointND::new([0,1,2]);
let y_val = p[dim!(y)];
assert_eq!(y_val, 1);
// ERROR: Index out of bounds
// let w_val = p[dim!(w)];
# }
```
*/
#[macro_export]
macro_rules! dim {
(x) => { 0usize };
(y) => { 1usize };
(z) => { 2usize };
(w) => { 3usize };
}
/**
Converts an array of identifiers to an array of usize values
Using any identifier or expression apart from _x_, _y_, _z_ or _w_ will result in a compile time error
It is recommended to use square brackets when calling this macro for clarity
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::dims;
let index_arr = dims![
x, // 0usize
y, // 1
z, // 2
w // 3
];
// Using identifiers multiple times is allowed,
// it's only a more readable way to specify indexes after all
let index_arr = dims![x,x, y,y, z,z];
assert_eq!(index_arr, [0,0, 1,1, 2,2usize]);
# }
```
This can be especially useful with the ```apply_dims``` method available to ```PointND```'s
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::{dims, PointND};
# fn apply_dims_example() -> Result<(), ()> {
let p = PointND
::new([0,1,2,3])
.apply_dims(&dims![y,w], |item| Ok( item * 2 ))? // Multiplies items 1 and 3 by 2
.apply_dims(&dims![x,z], |item| Ok( item + 10 ))?; // Adds 10 to items 0 and 2
assert_eq!(p.into_arr(), [10, 2, 20, 6]);
# Ok(())
# }
# }
```
*/
#[macro_export]
macro_rules! dims {
( $( $d:ident ), * ) => { [ $( dim!($d), )* ] };
}
/**
Converts a range of identifiers and expressions to a range of usize values
Using any identifiers apart from _x_, _y_, _z_ or _w_ will result in a compile time error
It is recommended to use parentheses when calling this macro for clarity
### Possible Variations:
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::{dimr, PointND};
/*
PLEASE NOTE!
x = 0usize
y = 1
z = 2
w = 3
*/
// Range with identifiers
assert_eq!(dimr!(x..z), 0..2usize);
// RangeInclusive with identifiers
assert_eq!(dimr!(y..=w), 1..=3usize);
// RangeTo with identifiers
assert_eq!(dimr!(..z), ..2);
// RangeToInclusive with identifiers
assert_eq!(dimr!(..=w), ..=3);
// RangeFrom with identifier
assert_eq!(dimr!(y..), 1..);
// Range with identifier and expression
assert_eq!(dimr!(x..10), 0..10usize);
// RangeInclusive with identifier and expression
assert_eq!(dimr!(x..=7), 0..=7usize);
# }
```
This is especially useful when taking slices of a ```PointND```
```
# #[macro_use] extern crate point_nd; fn main() {
# use point_nd::{dimr, PointND};
let p = PointND::new([0,1,2,3,4,5]);
let slice = &p[dimr!(x..=z)];
assert_eq!(slice, [0,1,2]);
# }
```
*/
#[macro_export]
macro_rules! dimr {
// Ident to Ident
// Range x..w
( $a:ident..$b:ident ) => { dim!($a)..dim!($b) };
// RangeInclusive y..=z
( $a:ident..=$b:ident ) => { dim!($a)..=dim!($b) };
// Ident to Expr
// Range z...6
( $a:ident..$b:expr ) => { dim!($a)..$b };
// RangeInclusive w..=9
( $a:ident..=$b:expr ) => { dim!($a)..=$b };
// Inf to Ident
// RangeTo ..w
( ..$a:ident ) => { ..dim!($a) };
// RangeToInclusive ..=z
( ..=$a:ident ) => { ..=dim!($a) };
// Ident to Inf
// RangeFrom x..
( $a:ident.. ) => { dim!($a).. };
}
#[cfg(test)]
mod tests {
use crate::*;
#[cfg(test)]
mod iterating {
use super::*;
#[test]
fn can_iter() {
let arr = [0, 1, 2, 3];
let p = PointND::<u8, 4>::from(&arr);
for (i, item) in p.iter().enumerate() {
assert_eq!(arr[i], *item);
}
let mut p = PointND::<u8, 4>::from(&arr);
for item in p.iter_mut() {
*item = 10;
}
for i in p.into_iter() {
assert_eq!(i, 10u8);
}
}
}
#[cfg(test)]
mod constructors {
use super::*;
#[test]
fn new_works() {
let p = PointND::new([0,1,2]);
assert_eq!(p.dims(), 3);
}
#[test]
#[should_panic]
fn new_cannot_construct_with_zero_dimensions() {
PointND::<i32, 0>::new([]);
}
#[test]
fn from_works() {
let arr = [0.0, 0.1, 0.2];
let p = PointND::<f64, 3>::from(&arr);
for i in 0..p.dims() {
assert_eq!(arr[i], p[i]);
}
}
#[test]
#[should_panic]
fn from_cannot_construct_with_zero_dimensions() {
PointND::<i32, 0>::from(&[]);
}
#[test]
fn fill_works() {
let fill_val = 21u8;
let p = PointND::<u8, 5>::fill(fill_val);
for i in p.into_iter() {
assert_eq!(i, fill_val);
}
}
#[test]
#[should_panic]
fn fill_cannot_construct_with_zero_dimensions() {
PointND::<i32, 0>::fill(100);
}
}
#[cfg(test)]
mod appliers {
use super::*;
#[test]
fn can_apply() {
let arr = [0,1,2,3];
let p = PointND::<u8, 4>
::from(&arr)
.apply(|a| Ok( a * 2 ))
.unwrap();
for (a, b) in arr.iter().zip(p.iter()) {
assert_eq!(*a * 2, *b);
}
}
}
#[cfg(test)]
mod get_and_set {
use super::*;
#[test]
fn can_get_slice_by_range_index() {
let p = PointND::new([0,1,2,3,4]);
let slice = &p[0..3];
assert_eq!(*slice, [0,1,2]);
}
#[test]
#[should_panic]
fn cannot_get_out_of_bounds_index() {
let p = PointND::new([0,1,2]);
let _x = p[p.dims() + 1];
}
#[test]
fn can_set_value_by_index() {
let mut p = PointND::new([0,1,2]);
let new_val = 9999;
p[1] = new_val;
assert_eq!(p.into_arr(), [0, new_val, 2]);
}
#[test]
fn cannot_set_out_of_bounds_index() {
let arr = [0,-1,2,-3];
let mut p = PointND::new(arr);
let err = p.set(100, 100);
assert_eq!(err, Err(()));
assert_eq!(p.into_arr(), arr);
}
}
#[cfg(test)]
mod operators {
use super::*;
#[test]
fn can_add() {
let arr = [0, -1, 2, -3];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
let p3 = p1 + p2;
for (a, b) in p3.into_arr().into_iter().zip(arr){
assert_eq!(a, b + b);
}
}
#[test]
fn can_add_assign() {
let arr = [0, -1, 2, -3, 4, -5];
let mut p1 = PointND::new(arr);
p1 += PointND::new(arr);
for i in 0..p1.dims() {
assert_eq!(p1[i], arr[i] + arr[i]);
}
}
#[test]
fn can_sub() {
let arr = [0, -1, 2, -3];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
let p3 = p1 - p2;
for (a, b) in p3.into_arr().into_iter().zip(arr){
assert_eq!(a, b - b);
}
}
#[test]
fn can_sub_assign() {
let arr = [0, -1, 2, -3, 4, -5];
let mut p1 = PointND::new(arr);
p1 -= PointND::new(arr);
for i in 0..p1.dims() {
assert_eq!(p1[i], arr[i] - arr[i]);
}
}
#[test]
fn can_mul() {
let arr = [0, -1, 2, -3];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
let p3 = p1 * p2;
for (a, b) in p3.into_arr().into_iter().zip(arr){
assert_eq!(a, b * b);
}
}
#[test]
fn can_mul_assign() {
let arr = [0, -1, 2, -3, 4, -5];
let mut p1 = PointND::new(arr);
p1 *= PointND::new(arr);
for i in 0..p1.dims() {
assert_eq!(p1[i], arr[i] * arr[i]);
}
}
#[test]
fn can_div() {
let arr = [-1, 2, -3, 4];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
let p3 = p1 / p2;
for (a, b) in p3.into_arr().into_iter().zip(arr){
assert_eq!(a, b / b);
}
}
#[test]
fn can_div_assign() {
let arr = [-1, 2, -3, 4, -5];
let mut p1 = PointND::new(arr);
p1 /= PointND::new(arr);
for i in 0..p1.dims() {
assert_eq!(p1[i], arr[i] / arr[i]);
}
}
#[test]
#[should_panic]
fn cannot_div_if_one_item_is_zero() {
let arr = [0, -1, 0, -3, 0];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
let p3 = p1 / p2;
for (a, b) in p3.into_arr().into_iter().zip(arr){
assert_eq!(a, b / b);
}
}
#[test]
#[should_panic]
fn cannot_div_assign_if_one_item_is_zero() {
let arr = [-1, 0, -3, 4, 0];
let mut p1 = PointND::new(arr);
p1 /= PointND::new(arr);
for i in 0..p1.dims() {
assert_eq!(p1[i], arr[i] / arr[i]);
}
}
#[test]
fn can_eq() {
let arr = [0, -1, 2, -3];
let p1 = PointND::new(arr);
let p2 = PointND::new(arr);
assert_eq!(p1, p2);
}
#[test]
fn can_ne() {
let arr1 = [1,2,3,4];
let p1 = PointND::new(arr1);
let arr2 = [5,6,7,8];
let p2 = PointND::new(arr2);
assert_ne!(p1, p2);
}
}
#[cfg(test)]
mod convenience_methods {
use super::*;
#[test]
fn getter_for_1d_points_work() {
let arr = [0];
let p = PointND::new(arr);
assert_eq!(*p.x(), arr[0]);
}
#[test]
fn setter_for_1d_points_work() -> Result<(), ()> {
let old_vals = [0];
let new_vals = [4];
let mut p = PointND::new(old_vals);
for i in 0..p.dims() {
p.set(i, new_vals[i])?;
assert_eq!(p[i], new_vals[i]);
}
Ok(())
}
#[test]
fn getters_for_2d_points_work() {
let arr = [0,1];
let p = PointND::new(arr);
assert_eq!(*p.x(), arr[0]);
assert_eq!(*p.y(), arr[1]);
}
#[test]
fn setters_for_2d_points_work() -> Result<(), ()> {
let old_vals = [0,1];
let new_vals = [4,5];
let mut p = PointND::new(old_vals);
for i in 0..p.dims() {
p.set(i, new_vals[i])?;
assert_eq!(p[i], new_vals[i]);
}
Ok(())
}
#[test]
fn getters_for_3d_points_work() {
let arr = [0,1,2];
let p = PointND::new(arr);
assert_eq!(*p.x(), arr[0]);
assert_eq!(*p.y(), arr[1]);
assert_eq!(*p.z(), arr[2]);
}
#[test]
fn setters_for_3d_points_work() -> Result<(), ()> {
let old_vals = [0,1,2];
let new_vals = [4,5,6];
let mut p = PointND::new(old_vals);
for i in 0..p.dims() {
p.set(i, new_vals[i])?;
assert_eq!(p[i], new_vals[i]);
}
Ok(())
}
#[test]
fn getters_for_4d_points_work() {
let arr = [0,1,2,3];
let p = PointND::new(arr);
assert_eq!(*p.x(), arr[0]);
assert_eq!(*p.y(), arr[1]);
assert_eq!(*p.z(), arr[2]);
assert_eq!(*p.w(), arr[3]);
}
#[test]
fn setters_for_4d_points_work() -> Result<(), ()> {
let old_vals = [0,1,2,3];
let new_vals = [4,5,6,7];
let mut p = PointND::new(old_vals);
for i in 0..p.dims() {
p.set(i, new_vals[i])?;
assert_eq!(p[i], new_vals[i]);
}
Ok(())
}
}
#[cfg(test)]
mod macros {
use super::*;
#[test]
fn dim_works() {
assert_eq!(dim!(x), 0);
assert_eq!(dim!(y), 1);
assert_eq!(dim!(z), 2);
assert_eq!(dim!(w), 3);
let p = PointND::new([-2,-1,0,1,2]);
assert_eq!(p[dim!(x)], -2);
assert_eq!(p[dim!(y)], -1);
assert_eq!(p[dim!(z)], 0);
assert_eq!(p[dim!(w)], 1);
}
#[test]
fn dims_works() {
assert_eq!(dims![x,y,z,w], [0,1,2,3]);
assert_eq!(dims![x,z,y], [0,2,1]);
let p = PointND
::new([0,1,2])
.apply_dims(&dims![x,y], |item| Ok( item + 10 ))
.unwrap();
assert_eq!(p.into_arr(), [10, 11, 2]);
}
#[test]
fn can_repeat_identifier_in_dims() {
assert_eq!(dims![x,x,x], [0,0,0]);
assert_eq!(dims![x,y,x], [0,1,0]);
}
#[test]
fn dimr_ident_to_ident_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![x..z]];
assert_eq!(*slice, [0,1]);
}
#[test]
fn dimr_ident_to_eq_ident_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![y..=w]];
assert_eq!(*slice, [1,2,3]);
}
#[test]
fn dimr_ident_to_expr_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![y..9]];
assert_eq!(*slice, [1,2,3,4,5,6,7,8]);
}
#[test]
fn dimr_ident_to_eq_expr_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![x..=5]];
assert_eq!(*slice, [0,1,2,3,4,5]);
}
#[test]
fn dimr_inf_to_ident_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![..w]];
assert_eq!(*slice, [0,1,2]);
}
#[test]
fn dimr_inf_to_eq_ident_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![..=w]];
assert_eq!(*slice, [0,1,2,3]);
}
#[test]
fn dimr_ident_to_inf_works() {
let arr = [0,1,2,3,4,5,6,7,8,9];
let slice = &arr[dimr![x..]];
assert_eq!(*slice, arr);
}
}
}