1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
/*!

A simple and flexible multidimensional point struct, based on an array.

See the ```PointND``` struct for basic usage

 */

use std::{
    ops::{
        Deref, DerefMut,
        Add, Sub, Mul, Div,
        AddAssign, SubAssign, MulAssign, DivAssign,
        Neg
    }
};


/**

The whole _point_ of the crate

Think of this as an array with convenience methods for accessing values if it's dimensions are
within ```1..=4```, i.e - all methods implemented for arrays are available with this

# Making a Point

```
# use point_nd::PointND;
// Creating a 2D point from a given array
let arr: [i32; 2] = [0,1];
let p: PointND<_, 2> = PointND::new(arr);

// Creating a 3D point from values of a given slice
let vec: Vec<i32> = vec![0, 1, 2];
let p: PointND<_, 3> = PointND::from(&vec);

// Creating a 4D point with all values set to 5
let p: PointND<i32, 4> = PointND::fill(5);

// The second generic arg is a usize constant and for the ::fill()
//  and ::from() functions, specifying it is sometimes necessary
// If you don't like writing PointND twice for type annotation,
//  use FQS (fully qualified syntax) instead:
let p = PointND::<_, 4>::fill(5);

// Trying to create a PointND with zero dimensions using the above will panic at runtime
//  ERROR: Can't create a point with zero dimensions
//  let p: PointND<_, 0> = PointND::new([]);
```

# Getting and Setting Values

If the dimensions of the point are within ```1..=4```, it is recommended to use the convenience getters and setters

```
# use point_nd::PointND;
let arr = [0,1];
let p: PointND<_, 2> = PointND::new(arr);

// As the point has 2 dimensions, we can access
//  it's values with the x() and y() methods
let x: &i32 = p.x();
assert_eq!(*x, arr[0]);
let y = p.y();
assert_eq!(*y, arr[1]);

// If the point had 3 dimensions, we could use the above and:
//  let z = p.z();
// Or with 4 dimensions, the above and:
//  let w = p.w();

// Setting values is just as simple
let mut p = PointND::new(arr);
p.set_x(101);
assert_eq!(*p.x(), 101);

// As with the getters, there are respective methods for setting the
//  values at y, z and w depending on the dimensions of the point
```

Alternatively, since ```PointND``` implements ```Deref```, all methods of getting and setting array elements can work as well

These are the only methods available for ```PointND```'s with dimensions **not** within ```1..=4```

Their use can be made easier using the dimension macros: ```dim```, ```dims``` and ```dimr``` (see their documentation for more info)

```
# use point_nd::PointND;
// A 5D point, cannot use any of the convenience methods
let arr = [-2, -1, 0, 1, 2];
let mut p = PointND::new(arr);

// ERROR: Not implemented for PointND<i32, 5>
// let x = p.x()
// ...
// let w = p.w();

// Instead use these deref array methods:
//  Safely getting
let x: Option<&i32> = p.get(0);
assert_eq!(*x.unwrap(), arr[0]);

// Indexing
let y: i32 = p[1];
assert_eq!(y, arr[1]);

// Slicing
let z_to_last: &[i32] = &p[2..];
assert_eq!(z_to_last, [0,1,2]);

// Setting via Indexing
p[1] = 345;
assert_eq!(p[1], 345);
```

# Querying Size

The number of dimensions can be retrieved using the ```dims()``` method (short for _dimensions_)

```
# use point_nd::PointND;
let p: PointND<i32, 2> = PointND::new([0,1]);
assert_eq!(p.dims(), 2);
// Alternatively, as PointND implements Deref, we can use len().
// It's name isn't as descriptive however
assert_eq!(p.len(), 2);
```

# Iterating

Iterating over a ```PointND``` is as easy as:

```
# use point_nd::PointND;
let mut p = PointND::new([0,1]);

for _ in p.iter()      { /* Do stuff */ }
for _ in p.iter_mut()  { /* Change stuff */ }
for _ in p.into_iter() { /* Do more stuff */ }
```

It must be noted that due to the ```Copy``` trait bounds of the items contained by a ```PointND```,
using ```into_iter()``` will not actually move the point as we are actually iterating over the contained
array via the ```Deref``` trait.

```
# use point_nd::PointND;
# let mut p = PointND::new([0,1]);
// The point 'p' is still usable after the call to into_iter()
assert_eq!(p.dims(), 2);
```

If destroying innocent points is your thing however, using ```into_arr()``` or ```into_vec()``` to
consume the point before iterating will move it out of scope

```
# use point_nd::PointND;
# let mut p = PointND::new([0,1]);
for _ in p.into_vec().into_iter() { /* Do stuff */ }

// ERROR: Can't access moved value
// assert_eq!(p.dims(), 2);
```

# Transforming Points

### Appliers

The ```apply```, ```apply_vals```, ```apply_dims``` and ```apply_point``` (henceforth referred to as _appliers_)
methods all consume self and return a new point after applying a function to all contained values

Multiple appliers can be chained together to make complex transformations to a ```PointND```

This is probably best explained with an example:

```
# use point_nd::PointND;
# fn apply_example() -> Result<(), ()> {
// A trivial transformation more easily done via other methods...
//  but it gets the point across
let p = PointND
    ::new([0,1,2])                      // Creates a new PointND
    .apply(|item| Ok( item + 2 ))?      // Adds 2 to each item
    .apply(|item| Ok( item * 3 ))?;     // Multiplies each item by 3
assert_eq!(p.into_arr(), [6, 9, 12]);
# Ok(())
# }
```

### Creating a Function to Pass to Appliers

The function or closure passed to the applier methods (henceforth referred to as _modifiers_)
accept either one or two args of type ```T``` (where ```T``` is the type of the items contained
by the point) depending on whether one or two sets of values are being modified.

Modifiers must all return a ```Result<T, ()>``` to allow graceful error handling by the applier instead of just panicking.

If an ```Err``` is returned by the modifier when called on any item, the applier returns an ```Err(())```

If all goes well, the applier returns an ```Ok``` with the new ```PointND``` as it's value

Hopefully the above wasn't confusing, but here's an example just in case:

```
# use point_nd::PointND;
# fn modifier_creation_example() -> Result<(), ()> {
// Dividing by zero causes a runtime error, so we return an Err if the second arg is zero
let divide_items = |a: f32, b: f32| -> Result<f32, ()> {
    if b == 0.0 {
        Err(())
    } else {
        Ok( a / b )
    }
};

let p1 = PointND::new([-1.2, 2.0, -3.0, 4.5]);
let p2 = PointND::new([2.3,  9.0, -3.0, 1.0]);
let zero_point = PointND::fill(0.0);

// Divides each item in p1 with each in p2
let result = p1.clone().apply_point(p2, divide_items);
// No zeros in p2, so everything's Ok
assert!(result.is_ok());

// Divides each item in p1 with each in zero_point
let result = p1.apply_point(zero_point, divide_items);
// Error is thrown by divide_items, causing apply_point() to throw error
assert!(result.is_err());
# Ok(())
# }
```
 */
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct PointND<T, const N: usize>([T; N])
    where T: Clone + Copy + Default;

impl<T, const N: usize> PointND<T, N>
    where T: Clone + Copy + Default {


    /**
     Returns a new ```PointND``` with values from the specified array

     This is the only constructor that does not ever need type annotation

     ### Panics

     If the length of the array is zero
     */
    pub fn new(arr: [T; N]) -> Self {
        if arr.len() == 0 {
            panic!("Cannot construct PointND with zero dimensions");
        }
        PointND(arr)
    }

    /**
     Returns a new ```PointND``` with values from the specified slice

     This constructor is probably only useful when ```Vec```'s of unknown length are
     the only collections available

     If the compiler is not able to infer the dimensions (a.k.a - length)
     of the point, it needs to be explicitly specified

     ```
     # use point_nd::PointND;
     // Explicitly specifying dimensions
     let p = PointND::<_, 3>::from(&vec![0,1,2]);

     // The generics don't always have to be specified though, for example
     let p1 = PointND::new([0,1]);       // Compiler knows this has 2 dimensions
     let p2 = PointND::from(&vec![2,3]);

     // Later, p2 is added to p1. The compiler is able to infer its dimensions
     let p = p1 + p2;
     ```

     ### Panics

     If the length of the slice is zero

     If the slice passed cannot be converted into an array
     */
    pub fn from(slice: &[T]) -> Self {
        let arr: [T; N] = slice.try_into().unwrap();
        PointND::new(arr)
    }

    /**
     Returns a new ```PointND``` with all values set as specified

     If the compiler is not able to infer the dimensions (a.k.a - length)
     of the point, it needs to be explicitly specified

     See the ```from()``` function for cases when generics don't need to be explicitly specified

     ```
     # use point_nd::PointND;
     // A point with 10 dimensions with all values set to 2
     let p = PointND::<_, 10>::fill(2);

     assert_eq!(p.dims(), 10);
     for i in p.into_iter() {
        assert_eq!(i, 2);
     }
     ```

     ### Panics

     If the dimensions of the point being constructed is zero
     */
    pub fn fill(value: T) -> Self {
        PointND::<T, N>::from(&[value; N])
    }


    /**
     Returns the number of dimensions of the point (a 2D point will return 2, a 3D point 3, _etc_)

     Equivalent to calling ```len()```
     */
    pub fn dims(&self) -> usize {
        self.len()
    }


    /**
     Safe method of setting values

     Sets value at index ```i``` to ```new_val``` and returns ```Ok```. If the index specified was out of range, does nothing and returns ```Err```

     This is probably only useful if dealing with ```PointND```'s of differing dimensions at once
     ```
     # use point_nd::PointND;
     let mut p = PointND::new([0,1]);

     // Setting an item within bounds, returns Ok
     let result = p.set(0, 21);
     assert!(result.is_ok());

     // Setting an item out of bounds, returns Err
     let result = p.set(1000000, 4);
     assert!(result.is_err());
     ```
     */
    pub fn set(&mut self, i: usize, new_val: T) -> Result<(), ()> {
        if self.dims() < i { return Err(()) }

        self[i] = new_val;
        Ok(())
    }


    /**
     Consumes ```self``` and calls the ```modifier``` on each item contained by ```self``` to create a new ```PointND```
     ```
     # use point_nd::PointND;
     # fn apply_example() -> Result<(), ()> {
     let p = PointND
         ::new([0,1,2])                    // Creates a new PointND
         .apply(|item| Ok( item + 2 ))?    // Adds 2 to each item
         .apply(|item| Ok( item * 3 ))?;   // Multiplies each item by 3
     assert_eq!(p.into_arr(), [6, 9, 12]);
     # Ok(())
     # }
     ```
     */
    // Did not call apply_dims() inside this to avoid the dimension checks it does
    pub fn apply<F>(self, modifier: F) -> Result<Self, ()>
        where F: Fn(T) -> Result<T, ()> {

        let mut arr = [T::default(); N];
        for i in 0..N {
            arr[i] = modifier(self[i])?;
        }

        Ok( PointND::new(arr) )
    }

    /**
     Consumes ```self``` and calls the ```modifier``` on the items at the specified ```dims``` to create a new ```PointND```

     Any items at dimensions not specified will be passed to the new point as is
     ```
     # use point_nd::PointND;
     # fn apply_dims_example() -> Result<(), ()> {
     let p = PointND
         ::new([0,1,2,3])                              // Creates a new PointND
         .apply_dims(&[1,3], |item| Ok( item * 2  ))?  // Multiplies items 1 and 3 by 2
         .apply_dims(&[0,2], |item| Ok( item + 10 ))?; // Adds 10 to items 0 and 2
     assert_eq!(p.into_arr(), [10, 2, 20, 6]);
     # Ok(())
     # }
     ```
     */
    pub fn apply_dims<F>(self, dims: &[usize], modifier: F) -> Result<Self, ()>
        where F: Fn(T) -> Result<T, ()> {

        let mut arr = [T::default(); N];
        for i in 0..N {
            if dims.contains(&i) {
                arr[i] = modifier(self[i])?;
            } else {
                arr[i] = self[i];
            }
        }

        Ok( PointND::new(arr) )
    }

    /**
     Consumes ```self``` and calls the ```modifier``` on each item contained
     by ```self``` and ```values``` to create a new ```PointND```

     When creating a modifier function to be used by this method, keep in mind that the items in
     ```self``` are passed to it through the **first arg**, and the items in ```value``` through the **second**
     ```
     # use point_nd::PointND;
     # fn apply_vals_example() -> Result<(), ()> {
     let p = PointND
         ::new([0,1,2])                             // Creates a new PointND
         .apply_vals([1,3,5], |a, b| Ok( a + b ))?  // Adds items in point to items in array
         .apply_vals([2,4,6], |a, b| Ok( a * b ))?; // Multiplies items in point
                                                    //  to items in array
     assert_eq!(p.into_arr(), [2, 16, 42]);
     # Ok(())
     # }
     ```
     */
    pub fn apply_vals<F>(self, values: [T; N], modifier: F) -> Result<Self, ()>
        where F: Fn(T, T) -> Result<T, ()> {

        let mut arr = [T::default(); N];
        for i in 0..N {
            arr[i] = modifier(self[i], values[i])?;
        }

        Ok( PointND::new(arr) )
    }

    /**
     Consumes ```self``` and calls the ```modifier``` on each item contained by ```self``` and another ```PointND``` to create a new point

     When creating a modifier function to be used by this method, keep in mind that the items in
     ```self``` are passed to it through the **first arg**, and the items in ```other``` through the **second**
     ```
     # use point_nd::PointND;
     # fn apply_point_example() -> Result<(), ()> {
     let p1 = PointND::new([0,9,3,1]);
     let p2 = PointND::fill(10);
     let p3 = PointND
         ::new([1,2,3,4])                         // Creates a new PointND
         .apply_point(p1, |a, b| Ok ( a - b ))?   // Subtracts items in p3 with those in p1
         .apply_point(p2, |a, b| Ok ( a * b ))?;  // Multiplies items in the returned point
                                                  //  with the items in p2
     assert_eq!(p3.into_arr(), [10, -70, 0, 30]);
     # Ok(())
     # }
     ```
     */
    pub fn apply_point<F>(self, other: Self, modifier: F) -> Result<Self, ()>
        where F: Fn(T, T) -> Result<T, ()> {

        self.apply_vals(other.into_arr(), modifier)
    }


    /// Consumes ```self```, returning the contained array
    pub fn into_arr(self) -> [T; N] {
        *self
    }

    /// Consumes ```self```, returning the contained array as a vector
    pub fn into_vec(self) -> Vec<T> {
        Vec::from(&self[..])
    }

}


// Deref
impl<T, const N: usize> Deref for PointND<T, N>
    where T: Clone + Copy + Default {

    type Target = [T; N];
    fn deref(&self) -> &Self::Target {
        &self.0
    }

}
impl<T, const N: usize> DerefMut for PointND<T, N>
    where T: Clone + Copy + Default {

    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }

}


// Math operators
//  Negation
impl<T, const N: usize> Neg for PointND<T, N>
    where T: Clone + Copy + Default + Neg<Output = T> {

    type Output = Self;
    fn neg(self) -> Self::Output {
        let mut arr = self.into_arr();
        for i in 0..N {
            arr[i] = -arr[i]
        }

        PointND::new(arr)
    }

}

//  Arithmetic
impl<T, const N: usize> Add for PointND<T, N>
    where T: Add<Output = T> + Clone + Copy + Default  {

    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut arr = self.into_arr();
        for i in 0..N {
            arr[i] = arr[i] + rhs[i];
        }

        PointND::new(arr)
    }

}
impl<T, const N: usize> Sub for PointND<T, N>
    where T: Sub<Output = T> + Clone + Copy + Default {

    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut arr = self.into_arr();
        for i in 0..N {
            arr[i] = arr[i] - rhs[i];
        }

        PointND::new(arr)
    }

}
impl<T, const N: usize> Mul for PointND<T, N>
    where T: Mul<Output = T> + Clone + Copy + Default {

    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        let mut arr = self.into_arr();
        for i in 0..N {
            arr[i] = arr[i] * rhs[i];
        }

        PointND::new(arr)
    }

}
/**
 ### Warning

 Dividing by a ```PointND``` that contains a zero will cause a panic
 */
impl<T, const N: usize> Div for PointND<T, N>
    where T: Div<Output = T> + Clone + Copy + Default {

    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        let mut arr = self.into_arr();
        for i in 0..N {
            arr[i] = arr[i] / rhs[i];
        }

        PointND::new(arr)
    }

}

// Arithmetic Assign
impl<T, const N: usize> AddAssign for PointND<T, N>
    where T: AddAssign + Clone + Copy + Default {

    fn add_assign(&mut self, rhs: Self) {
        for i in 0..N {
            self[i] += rhs[i];
        }
    }

}
impl<T, const N: usize> SubAssign for PointND<T, N>
    where T: SubAssign + Clone + Copy + Default {

    fn sub_assign(&mut self, rhs: Self) {
        for i in 0..N {
            self[i] -= rhs[i];
        }
    }

}
impl<T, const N: usize> MulAssign for PointND<T, N>
    where T: MulAssign + Clone + Copy + Default {

    fn mul_assign(&mut self, rhs: Self) {
        for i in 0..N {
            self[i] *= rhs[i];
        }
    }

}
/**
 ### Warning

 Dividing by a ```PointND``` that contains a zero will cause a panic
 */
impl<T, const N: usize> DivAssign for PointND<T, N>
    where T: DivAssign + Clone + Copy + Default {

    fn div_assign(&mut self, rhs: Self) {
        for i in 0..N {
            self[i] /= rhs[i];
        }
    }

}


// Convenience Getters and Setters
/// ### 1D
/// Functions for safely getting and setting the value contained by a 1D ```PointND```
impl<T> PointND<T, 1>
    where T: Clone + Copy + Default  {

    pub fn x(&self) -> &T { &self[0] }

    pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }

}
/// ### 2D
/// Functions for safely getting and setting the values contained by a 2D ```PointND```
impl<T> PointND<T, 2>
    where T: Clone + Copy + Default  {

    pub fn x(&self) -> &T { &self[0] }
    pub fn y(&self) -> &T { &self[1] }

    pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
    pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }

}
/// ### 3D
/// Functions for safely getting and setting the values contained by a 3D ```PointND```
impl<T> PointND<T, 3>
    where T: Clone + Copy + Default  {

    pub fn x(&self) -> &T { &self[0] }
    pub fn y(&self) -> &T { &self[1] }
    pub fn z(&self) -> &T { &self[2] }

    pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
    pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }
    pub fn set_z(&mut self, new_value: T) { self[2] = new_value; }

}
/// ### 4D
/// Functions for safely getting and setting the values contained by a 4D ```PointND```
impl<T> PointND<T, 4>
    where T: Clone + Copy + Default  {

    pub fn x(&self) -> &T { &self[0] }
    pub fn y(&self) -> &T { &self[1] }
    pub fn z(&self) -> &T { &self[2] }
    pub fn w(&self) -> &T { &self[3] }

    pub fn set_x(&mut self, new_value: T) { self[0] = new_value; }
    pub fn set_y(&mut self, new_value: T) { self[1] = new_value; }
    pub fn set_z(&mut self, new_value: T) { self[2] = new_value; }
    pub fn set_w(&mut self, new_value: T) { self[3] = new_value; }

}


// Dimension Macros
/**
 Converts an identifier _x_, _y_, _z_ or _w_ to a usize value for indexing

 Using any identifier apart from the above or multiple identifiers will result in a compile time error

 It is recommended to use parentheses when calling this macro for clarity

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::dim;
 let x_index: usize = dim!(x);
 assert_eq!(x_index, 0usize);
 let y_index = dim!(y);
 assert_eq!(y_index, 1usize);

 // ERROR: Only allowed to use one of x, y, z or w
 // let fifth_dimension = dim!(v);

 // ERROR: Only accepts one identifier
 //        If multiple dimensions are what you need, see the dims macro
 // let sixth_and_seventh = dim!(u, t);
 # }
 ```

 This can be especially useful for indexing a ```PointND``` (or any collection indexable with a usize)

 If a dimension is passed that is out of bounds, it will result in a compile time error

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::{dim, PointND};
 let p = PointND::new([0,1,2]);
 let y_val = p[dim!(y)];
 assert_eq!(y_val, 1);

 // ERROR: Index out of bounds
 // let w_val = p[dim!(w)];
 # }
 ```
 */
#[macro_export]
macro_rules! dim {

    (x) => { 0usize };
    (y) => { 1usize };
    (z) => { 2usize };
    (w) => { 3usize };

}

/**
 Converts an array of identifiers to an array of usize values

 Using any identifier or expression apart from _x_, _y_, _z_ or _w_ will result in a compile time error

 It is recommended to use square brackets when calling this macro for clarity

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::dims;
 let index_arr = dims![
     x,  // 0usize
     y,  // 1
     z,  // 2
     w   // 3
 ];

 // Using identifiers multiple times is allowed,
 //  it's only a more readable way to specify indexes after all
 let index_arr =  dims![x,x, y,y, z,z];
 assert_eq!(index_arr, [0,0, 1,1, 2,2usize]);
 # }
 ```

 This can be especially useful with the ```apply_dims``` method available to ```PointND```'s

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::{dims, PointND};
 # fn apply_dims_example() -> Result<(), ()> {
 let p = PointND
     ::new([0,1,2,3])
     .apply_dims(&dims![y,w], |item| Ok( item * 2  ))?  // Multiplies items 1 and 3 by 2
     .apply_dims(&dims![x,z], |item| Ok( item + 10 ))?; // Adds 10 to items 0 and 2
 assert_eq!(p.into_arr(), [10, 2, 20, 6]);
 # Ok(())
 # }
 # }
 ```
 */
#[macro_export]
macro_rules! dims {

    ( $( $d:ident ), * ) => { [ $( dim!($d), )* ] };

}

/**
 Converts a range of identifiers and expressions to a range of usize values

 Using any identifiers apart from _x_, _y_, _z_ or _w_ will result in a compile time error

 It is recommended to use parentheses when calling this macro for clarity

 ### Possible Variations:

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::{dimr, PointND};
 /*
  PLEASE NOTE!
  x = 0usize
  y = 1
  z = 2
  w = 3
  */

 // Range with identifiers
 assert_eq!(dimr!(x..z), 0..2usize);

 // RangeInclusive with identifiers
 assert_eq!(dimr!(y..=w), 1..=3usize);

 // RangeTo with identifiers
 assert_eq!(dimr!(..z), ..2);

 // RangeToInclusive with identifiers
 assert_eq!(dimr!(..=w), ..=3);

 // RangeFrom with identifier
 assert_eq!(dimr!(y..), 1..);

 // Range with identifier and expression
 assert_eq!(dimr!(x..10), 0..10usize);

 // RangeInclusive with identifier and expression
 assert_eq!(dimr!(x..=7), 0..=7usize);
 # }
 ```

 This is especially useful when taking slices of a ```PointND```

 ```
 # #[macro_use] extern crate point_nd; fn main() {
 # use point_nd::{dimr, PointND};
 let p = PointND::new([0,1,2,3,4,5]);
 let slice = &p[dimr!(x..=z)];
 assert_eq!(slice, [0,1,2]);
 # }
 ```
 */
#[macro_export]
macro_rules! dimr {

    // Ident to Ident
    //  Range x..w
    ( $a:ident..$b:ident ) => { dim!($a)..dim!($b) };
    //  RangeInclusive y..=z
    ( $a:ident..=$b:ident ) => { dim!($a)..=dim!($b) };

    // Ident to Expr
    //  Range z...6
    ( $a:ident..$b:expr ) => { dim!($a)..$b };
    //  RangeInclusive w..=9
    ( $a:ident..=$b:expr ) => { dim!($a)..=$b };

    // Inf to Ident
    //  RangeTo ..w
    ( ..$a:ident ) => { ..dim!($a) };
    //  RangeToInclusive ..=z
    ( ..=$a:ident ) => { ..=dim!($a) };

    // Ident to Inf
    //  RangeFrom x..
    ( $a:ident.. ) => { dim!($a).. };

}


#[cfg(test)]
mod tests {
    use crate::*;

    #[cfg(test)]
    mod iterating {
        use super::*;

        #[test]
        fn can_iter() {

            let arr = [0, 1, 2, 3];

            let p = PointND::<u8, 4>::from(&arr);
            for (i, item) in p.iter().enumerate() {
                assert_eq!(arr[i], *item);
            }

            let mut p = PointND::<u8, 4>::from(&arr);
            for item in p.iter_mut() {
                *item = 10;
            }

            for i in p.into_iter() {
                assert_eq!(i, 10u8);
            }

        }

    }

    #[cfg(test)]
    mod constructors {
        use super::*;

        #[test]
        fn new_works() {
            let p = PointND::new([0,1,2]);
            assert_eq!(p.dims(), 3);
        }
        #[test]
        #[should_panic]
        fn new_cannot_construct_with_zero_dimensions() {
            PointND::<i32, 0>::new([]);
        }

        #[test]
        fn from_works() {
            let arr = [0.0, 0.1, 0.2];
            let p = PointND::<f64, 3>::from(&arr);
            for i in 0..p.dims() {
                assert_eq!(arr[i], p[i]);
            }
        }
        #[test]
        #[should_panic]
        fn from_cannot_construct_with_zero_dimensions() {
            PointND::<i32, 0>::from(&[]);
        }

        #[test]
        fn fill_works() {
            let fill_val = 21u8;
            let p = PointND::<u8, 5>::fill(fill_val);
            for i in p.into_iter() {
                assert_eq!(i, fill_val);
            }
        }
        #[test]
        #[should_panic]
        fn fill_cannot_construct_with_zero_dimensions() {
            PointND::<i32, 0>::fill(100);
        }

    }

    #[cfg(test)]
    mod appliers {
        use super::*;

        #[test]
        fn can_apply() {

            let arr = [0,1,2,3];

            let p = PointND::<u8, 4>
                ::from(&arr)
                .apply(|a| Ok( a * 2 ))
                .unwrap();

            for (a, b) in arr.iter().zip(p.iter()) {
                assert_eq!(*a * 2, *b);
            }
        }

    }

    #[cfg(test)]
    mod get_and_set {
        use super::*;

        #[test]
        fn can_get_slice_by_range_index() {
            let p = PointND::new([0,1,2,3,4]);
            let slice = &p[0..3];
            assert_eq!(*slice, [0,1,2]);
        }

        #[test]
        #[should_panic]
        fn cannot_get_out_of_bounds_index() {
            let p = PointND::new([0,1,2]);
            let _x = p[p.dims() + 1];
        }

        #[test]
        fn can_set_value_by_index() {

            let mut p = PointND::new([0,1,2]);

            let new_val = 9999;
            p[1] = new_val;

            assert_eq!(p.into_arr(), [0, new_val, 2]);
        }

        #[test]
        fn cannot_set_out_of_bounds_index() {

            let arr = [0,-1,2,-3];
            let mut p = PointND::new(arr);

            let err = p.set(100, 100);

            assert_eq!(err, Err(()));
            assert_eq!(p.into_arr(), arr);
        }

    }

    #[cfg(test)]
    mod operators {
        use super::*;

        #[test]
        fn can_add() {
            let arr = [0, -1, 2, -3];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            let p3 = p1 + p2;
            for (a, b) in p3.into_arr().into_iter().zip(arr){
                assert_eq!(a, b + b);
            }
        }
        #[test]
        fn can_add_assign() {
            let arr = [0, -1, 2, -3, 4, -5];
            let mut p1 = PointND::new(arr);

            p1 += PointND::new(arr);
            for i in 0..p1.dims() {
                assert_eq!(p1[i], arr[i] + arr[i]);
            }
        }

        #[test]
        fn can_sub() {
            let arr = [0, -1, 2, -3];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            let p3 = p1 - p2;
            for (a, b) in p3.into_arr().into_iter().zip(arr){
                assert_eq!(a, b - b);
            }
        }
        #[test]
        fn can_sub_assign() {
            let arr = [0, -1, 2, -3, 4, -5];
            let mut p1 = PointND::new(arr);

            p1 -= PointND::new(arr);
            for i in 0..p1.dims() {
                assert_eq!(p1[i], arr[i] - arr[i]);
            }
        }

        #[test]
        fn can_mul() {
            let arr = [0, -1, 2, -3];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            let p3 = p1 * p2;
            for (a, b) in p3.into_arr().into_iter().zip(arr){
                assert_eq!(a, b * b);
            }
        }
        #[test]
        fn can_mul_assign() {
            let arr = [0, -1, 2, -3, 4, -5];
            let mut p1 = PointND::new(arr);

            p1 *= PointND::new(arr);
            for i in 0..p1.dims() {
                assert_eq!(p1[i], arr[i] * arr[i]);
            }
        }

        #[test]
        fn can_div() {
            let arr = [-1, 2, -3, 4];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            let p3 = p1 / p2;
            for (a, b) in p3.into_arr().into_iter().zip(arr){
                assert_eq!(a, b / b);
            }
        }
        #[test]
        fn can_div_assign() {
            let arr = [-1, 2, -3, 4, -5];
            let mut p1 = PointND::new(arr);

            p1 /= PointND::new(arr);
            for i in 0..p1.dims() {
                assert_eq!(p1[i], arr[i] / arr[i]);
            }
        }

        #[test]
        #[should_panic]
        fn cannot_div_if_one_item_is_zero() {
            let arr = [0, -1, 0, -3, 0];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            let p3 = p1 / p2;
            for (a, b) in p3.into_arr().into_iter().zip(arr){
                assert_eq!(a, b / b);
            }
        }
        #[test]
        #[should_panic]
        fn cannot_div_assign_if_one_item_is_zero() {
            let arr = [-1, 0, -3, 4, 0];
            let mut p1 = PointND::new(arr);

            p1 /= PointND::new(arr);
            for i in 0..p1.dims() {
                assert_eq!(p1[i], arr[i] / arr[i]);
            }
        }

        #[test]
        fn can_eq() {
            let arr = [0, -1, 2, -3];
            let p1 = PointND::new(arr);
            let p2 = PointND::new(arr);

            assert_eq!(p1, p2);
        }

        #[test]
        fn can_ne() {
            let arr1 = [1,2,3,4];
            let p1 = PointND::new(arr1);
            let arr2 = [5,6,7,8];
            let p2 = PointND::new(arr2);

            assert_ne!(p1, p2);
        }

    }

    #[cfg(test)]
    mod convenience_methods {
        use super::*;

        #[test]
        fn getter_for_1d_points_work() {
            let arr = [0];
            let p = PointND::new(arr);

            assert_eq!(*p.x(), arr[0]);
        }
        #[test]
        fn setter_for_1d_points_work() -> Result<(), ()> {

            let old_vals = [0];
            let new_vals = [4];
            let mut p = PointND::new(old_vals);

            for i in 0..p.dims() {
                p.set(i, new_vals[i])?;
                assert_eq!(p[i], new_vals[i]);
            }

            Ok(())
        }

        #[test]
        fn getters_for_2d_points_work() {
            let arr = [0,1];
            let p = PointND::new(arr);

            assert_eq!(*p.x(), arr[0]);
            assert_eq!(*p.y(), arr[1]);
        }
        #[test]
        fn setters_for_2d_points_work() -> Result<(), ()> {

            let old_vals = [0,1];
            let new_vals = [4,5];
            let mut p = PointND::new(old_vals);

            for i in 0..p.dims() {
                p.set(i, new_vals[i])?;
                assert_eq!(p[i], new_vals[i]);
            }

            Ok(())
        }

        #[test]
        fn getters_for_3d_points_work() {
            let arr = [0,1,2];
            let p = PointND::new(arr);

            assert_eq!(*p.x(), arr[0]);
            assert_eq!(*p.y(), arr[1]);
            assert_eq!(*p.z(), arr[2]);
        }
        #[test]
        fn setters_for_3d_points_work() -> Result<(), ()> {

            let old_vals = [0,1,2];
            let new_vals = [4,5,6];
            let mut p = PointND::new(old_vals);

            for i in 0..p.dims() {
                p.set(i, new_vals[i])?;
                assert_eq!(p[i], new_vals[i]);
            }

            Ok(())
        }

        #[test]
        fn getters_for_4d_points_work() {
            let arr = [0,1,2,3];
            let p = PointND::new(arr);

            assert_eq!(*p.x(), arr[0]);
            assert_eq!(*p.y(), arr[1]);
            assert_eq!(*p.z(), arr[2]);
            assert_eq!(*p.w(), arr[3]);
        }
        #[test]
        fn setters_for_4d_points_work() -> Result<(), ()> {

            let old_vals = [0,1,2,3];
            let new_vals = [4,5,6,7];
            let mut p = PointND::new(old_vals);

            for i in 0..p.dims() {
                p.set(i, new_vals[i])?;
                assert_eq!(p[i], new_vals[i]);
            }

            Ok(())
        }

    }

    #[cfg(test)]
    mod macros {
        use super::*;

        #[test]
        fn dim_works() {
            assert_eq!(dim!(x), 0);
            assert_eq!(dim!(y), 1);
            assert_eq!(dim!(z), 2);
            assert_eq!(dim!(w), 3);

            let p = PointND::new([-2,-1,0,1,2]);
            assert_eq!(p[dim!(x)], -2);
            assert_eq!(p[dim!(y)], -1);
            assert_eq!(p[dim!(z)], 0);
            assert_eq!(p[dim!(w)], 1);
        }

        #[test]
        fn dims_works() {
            assert_eq!(dims![x,y,z,w], [0,1,2,3]);
            assert_eq!(dims![x,z,y],   [0,2,1]);

            let p = PointND
                ::new([0,1,2])
                .apply_dims(&dims![x,y], |item| Ok( item + 10 ))
                .unwrap();
            assert_eq!(p.into_arr(), [10, 11, 2]);
        }
        #[test]
        fn can_repeat_identifier_in_dims() {
            assert_eq!(dims![x,x,x], [0,0,0]);
            assert_eq!(dims![x,y,x], [0,1,0]);
        }

        #[test]
        fn dimr_ident_to_ident_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![x..z]];
            assert_eq!(*slice, [0,1]);
        }
        #[test]
        fn dimr_ident_to_eq_ident_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![y..=w]];
            assert_eq!(*slice, [1,2,3]);
        }

        #[test]
        fn dimr_ident_to_expr_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![y..9]];
            assert_eq!(*slice, [1,2,3,4,5,6,7,8]);
        }
        #[test]
        fn dimr_ident_to_eq_expr_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![x..=5]];
            assert_eq!(*slice, [0,1,2,3,4,5]);
        }

        #[test]
        fn dimr_inf_to_ident_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![..w]];
            assert_eq!(*slice, [0,1,2]);
        }
        #[test]
        fn dimr_inf_to_eq_ident_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![..=w]];
            assert_eq!(*slice, [0,1,2,3]);
        }

        #[test]
        fn dimr_ident_to_inf_works() {
            let arr = [0,1,2,3,4,5,6,7,8,9];
            let slice = &arr[dimr![x..]];
            assert_eq!(*slice, arr);
        }

    }

}