plotters_unstable/coord/ranged1d/combinators/
logarithmic.rs1use crate::coord::ranged1d::types::RangedCoordf64;
2use crate::coord::ranged1d::{AsRangedCoord, DefaultFormatting, KeyPointHint, Ranged};
3use std::marker::PhantomData;
4use std::ops::Range;
5
6pub trait LogScalable: Clone {
9 fn as_f64(&self) -> f64;
11 fn from_f64(f: f64) -> Self;
13}
14
15macro_rules! impl_log_scalable {
16 (i, $t:ty) => {
17 impl LogScalable for $t {
18 fn as_f64(&self) -> f64 {
19 if *self != 0 {
20 return *self as f64;
21 }
22 return 0.5;
27 }
28 fn from_f64(f: f64) -> $t {
29 f.round() as $t
30 }
31 }
32 };
33 (f, $t:ty) => {
34 impl LogScalable for $t {
35 fn as_f64(&self) -> f64 {
36 *self as f64
37 }
38 fn from_f64(f: f64) -> $t {
39 f as $t
40 }
41 }
42 };
43}
44
45impl_log_scalable!(i, u8);
46impl_log_scalable!(i, u16);
47impl_log_scalable!(i, u32);
48impl_log_scalable!(i, u64);
49impl_log_scalable!(f, f32);
50impl_log_scalable!(f, f64);
51
52pub trait IntoLogRange {
53 type ValueType: LogScalable;
54 fn log_scale(self) -> LogRange<Self::ValueType>;
55}
56
57impl<T: LogScalable> IntoLogRange for Range<T> {
58 type ValueType = T;
59 fn log_scale(self) -> LogRange<T> {
60 LogRange(self)
61 }
62}
63
64#[derive(Clone)]
67pub struct LogRange<V: LogScalable>(pub Range<V>);
68
69impl<V: LogScalable> From<LogRange<V>> for LogCoord<V> {
70 fn from(range: LogRange<V>) -> LogCoord<V> {
71 LogCoord {
72 linear: (range.0.start.as_f64().ln()..range.0.end.as_f64().ln()).into(),
73 logic: range.0,
74 marker: PhantomData,
75 }
76 }
77}
78
79impl<V: LogScalable> AsRangedCoord for LogRange<V> {
80 type CoordDescType = LogCoord<V>;
81 type Value = V;
82}
83
84pub struct LogCoord<V: LogScalable> {
86 linear: RangedCoordf64,
87 logic: Range<V>,
88 marker: PhantomData<V>,
89}
90
91impl<V: LogScalable> Ranged for LogCoord<V> {
92 type FormatOption = DefaultFormatting;
93 type ValueType = V;
94
95 fn map(&self, value: &V, limit: (i32, i32)) -> i32 {
96 let value = value.as_f64();
97 let value = value.max(self.logic.start.as_f64()).ln();
98 self.linear.map(&value, limit)
99 }
100
101 fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType> {
102 let max_points = hint.max_num_points();
103 let tier_1 = (self.logic.end.as_f64() / self.logic.start.as_f64())
104 .log10()
105 .abs()
106 .floor()
107 .max(1.0) as usize;
108
109 let tier_2_density = if max_points < tier_1 {
110 0
111 } else {
112 let density = 1 + (max_points - tier_1) / tier_1;
113 let mut exp = 1;
114 while exp * 10 <= density {
115 exp *= 10;
116 }
117 exp - 1
118 };
119
120 let mut multiplier = 10.0;
121 let mut cnt = 1;
122 while max_points < tier_1 / cnt {
123 multiplier *= 10.0;
124 cnt += 1;
125 }
126
127 let mut ret = vec![];
128 let mut val = (10f64).powf(self.logic.start.as_f64().log10().ceil());
129
130 while val <= self.logic.end.as_f64() {
131 ret.push(V::from_f64(val));
132 for i in 1..=tier_2_density {
133 let v = val
134 * (1.0
135 + multiplier / f64::from(tier_2_density as u32 + 1) * f64::from(i as u32));
136 if v > self.logic.end.as_f64() {
137 break;
138 }
139 ret.push(V::from_f64(v));
140 }
141 val *= multiplier;
142 }
143
144 ret
145 }
146
147 fn range(&self) -> Range<V> {
148 self.logic.clone()
149 }
150}
151#[cfg(test)]
152mod test {
153 use super::*;
154 #[test]
155 fn regression_test_issue_143() {
156 let range: LogCoord<f64> = LogRange(1.0..5.0).into();
157
158 range.key_points(100);
159 }
160}