1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use crate::field::extension::Extendable;
use crate::hash::hash_types::{HashOutTarget, RichField};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::{CommonCircuitData, VerifierCircuitTarget};
use crate::plonk::config::{AlgebraicHasher, GenericConfig};
use crate::plonk::plonk_common::salt_size;
use crate::plonk::proof::{
    OpeningSetTarget, ProofChallengesTarget, ProofTarget, ProofWithPublicInputsTarget,
};
use crate::plonk::vanishing_poly::eval_vanishing_poly_circuit;
use crate::plonk::vars::EvaluationTargets;
use crate::util::reducing::ReducingFactorTarget;
use crate::with_context;

impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
    /// Recursively verifies an inner proof.
    pub fn verify_proof<C: GenericConfig<D, F = F>>(
        &mut self,
        proof_with_pis: &ProofWithPublicInputsTarget<D>,
        inner_verifier_data: &VerifierCircuitTarget,
        inner_common_data: &CommonCircuitData<F, D>,
    ) where
        C::Hasher: AlgebraicHasher<F>,
    {
        assert_eq!(
            proof_with_pis.public_inputs.len(),
            inner_common_data.num_public_inputs
        );
        let public_inputs_hash =
            self.hash_n_to_hash_no_pad::<C::InnerHasher>(proof_with_pis.public_inputs.clone());
        let challenges = proof_with_pis.get_challenges::<F, C>(
            self,
            public_inputs_hash,
            inner_verifier_data.circuit_digest,
            inner_common_data,
        );

        self.verify_proof_with_challenges::<C>(
            &proof_with_pis.proof,
            public_inputs_hash,
            challenges,
            inner_verifier_data,
            inner_common_data,
        );
    }

    /// Recursively verifies an inner proof.
    fn verify_proof_with_challenges<C: GenericConfig<D, F = F>>(
        &mut self,
        proof: &ProofTarget<D>,
        public_inputs_hash: HashOutTarget,
        challenges: ProofChallengesTarget<D>,
        inner_verifier_data: &VerifierCircuitTarget,
        inner_common_data: &CommonCircuitData<F, D>,
    ) where
        C::Hasher: AlgebraicHasher<F>,
    {
        let one = self.one_extension();

        let local_constants = &proof.openings.constants;
        let local_wires = &proof.openings.wires;
        let vars = EvaluationTargets {
            local_constants,
            local_wires,
            public_inputs_hash: &public_inputs_hash,
        };
        let local_zs = &proof.openings.plonk_zs;
        let next_zs = &proof.openings.plonk_zs_next;
        let s_sigmas = &proof.openings.plonk_sigmas;
        let partial_products = &proof.openings.partial_products;

        let zeta_pow_deg =
            self.exp_power_of_2_extension(challenges.plonk_zeta, inner_common_data.degree_bits());
        let vanishing_polys_zeta = with_context!(
            self,
            "evaluate the vanishing polynomial at our challenge point, zeta.",
            eval_vanishing_poly_circuit::<F, D>(
                self,
                inner_common_data,
                challenges.plonk_zeta,
                zeta_pow_deg,
                vars,
                local_zs,
                next_zs,
                partial_products,
                s_sigmas,
                &challenges.plonk_betas,
                &challenges.plonk_gammas,
                &challenges.plonk_alphas,
            )
        );

        with_context!(self, "check vanishing and quotient polynomials.", {
            let quotient_polys_zeta = &proof.openings.quotient_polys;
            let mut scale = ReducingFactorTarget::new(zeta_pow_deg);
            let z_h_zeta = self.sub_extension(zeta_pow_deg, one);
            for (i, chunk) in quotient_polys_zeta
                .chunks(inner_common_data.quotient_degree_factor)
                .enumerate()
            {
                let recombined_quotient = scale.reduce(chunk, self);
                let computed_vanishing_poly = self.mul_extension(z_h_zeta, recombined_quotient);
                self.connect_extension(vanishing_polys_zeta[i], computed_vanishing_poly);
            }
        });

        let merkle_caps = &[
            inner_verifier_data.constants_sigmas_cap.clone(),
            proof.wires_cap.clone(),
            proof.plonk_zs_partial_products_cap.clone(),
            proof.quotient_polys_cap.clone(),
        ];

        let fri_instance = inner_common_data.get_fri_instance_target(self, challenges.plonk_zeta);
        with_context!(
            self,
            "verify FRI proof",
            self.verify_fri_proof::<C>(
                &fri_instance,
                &proof.openings.to_fri_openings(),
                &challenges.fri_challenges,
                merkle_caps,
                &proof.opening_proof,
                &inner_common_data.fri_params,
            )
        );
    }

    pub fn add_virtual_proof_with_pis(
        &mut self,
        common_data: &CommonCircuitData<F, D>,
    ) -> ProofWithPublicInputsTarget<D> {
        let proof = self.add_virtual_proof(common_data);
        let public_inputs = self.add_virtual_targets(common_data.num_public_inputs);
        ProofWithPublicInputsTarget {
            proof,
            public_inputs,
        }
    }

    fn add_virtual_proof(&mut self, common_data: &CommonCircuitData<F, D>) -> ProofTarget<D> {
        let config = &common_data.config;
        let fri_params = &common_data.fri_params;
        let cap_height = fri_params.config.cap_height;

        let salt = salt_size(common_data.fri_params.hiding);
        let num_leaves_per_oracle = &[
            common_data.num_preprocessed_polys(),
            config.num_wires + salt,
            common_data.num_zs_partial_products_polys() + salt,
            common_data.num_quotient_polys() + salt,
        ];

        ProofTarget {
            wires_cap: self.add_virtual_cap(cap_height),
            plonk_zs_partial_products_cap: self.add_virtual_cap(cap_height),
            quotient_polys_cap: self.add_virtual_cap(cap_height),
            openings: self.add_opening_set(common_data),
            opening_proof: self.add_virtual_fri_proof(num_leaves_per_oracle, fri_params),
        }
    }

    fn add_opening_set(&mut self, common_data: &CommonCircuitData<F, D>) -> OpeningSetTarget<D> {
        let config = &common_data.config;
        let num_challenges = config.num_challenges;
        let total_partial_products = num_challenges * common_data.num_partial_products;
        OpeningSetTarget {
            constants: self.add_virtual_extension_targets(common_data.num_constants),
            plonk_sigmas: self.add_virtual_extension_targets(config.num_routed_wires),
            wires: self.add_virtual_extension_targets(config.num_wires),
            plonk_zs: self.add_virtual_extension_targets(num_challenges),
            plonk_zs_next: self.add_virtual_extension_targets(num_challenges),
            partial_products: self.add_virtual_extension_targets(total_partial_products),
            quotient_polys: self.add_virtual_extension_targets(common_data.num_quotient_polys()),
        }
    }
}

#[cfg(test)]
mod tests {
    use anyhow::Result;
    use log::{info, Level};

    use super::*;
    use crate::fri::reduction_strategies::FriReductionStrategy;
    use crate::fri::FriConfig;
    use crate::gates::noop::NoopGate;
    use crate::iop::witness::{PartialWitness, WitnessWrite};
    use crate::plonk::circuit_data::{CircuitConfig, VerifierOnlyCircuitData};
    use crate::plonk::config::{GenericConfig, KeccakGoldilocksConfig, PoseidonGoldilocksConfig};
    use crate::plonk::proof::{CompressedProofWithPublicInputs, ProofWithPublicInputs};
    use crate::plonk::prover::prove;
    use crate::util::timing::TimingTree;

    #[test]
    fn test_recursive_verifier() -> Result<()> {
        init_logger();
        const D: usize = 2;
        type C = PoseidonGoldilocksConfig;
        type F = <C as GenericConfig<D>>::F;
        let config = CircuitConfig::standard_recursion_zk_config();

        let (proof, vd, cd) = dummy_proof::<F, C, D>(&config, 4_000)?;
        let (proof, vd, cd) =
            recursive_proof::<F, C, C, D>(proof, vd, cd, &config, None, true, true)?;
        test_serialization(&proof, &vd, &cd)?;

        Ok(())
    }

    #[test]
    fn test_recursive_recursive_verifier() -> Result<()> {
        init_logger();
        const D: usize = 2;
        type C = PoseidonGoldilocksConfig;
        type F = <C as GenericConfig<D>>::F;

        let config = CircuitConfig::standard_recursion_config();

        // Start with a degree 2^14 proof
        let (proof, vd, cd) = dummy_proof::<F, C, D>(&config, 16_000)?;
        assert_eq!(cd.degree_bits(), 14);

        // Shrink it to 2^13.
        let (proof, vd, cd) =
            recursive_proof::<F, C, C, D>(proof, vd, cd, &config, Some(13), false, false)?;
        assert_eq!(cd.degree_bits(), 13);

        // Shrink it to 2^12.
        let (proof, vd, cd) =
            recursive_proof::<F, C, C, D>(proof, vd, cd, &config, None, true, true)?;
        assert_eq!(cd.degree_bits(), 12);

        test_serialization(&proof, &vd, &cd)?;

        Ok(())
    }

    /// Creates a chain of recursive proofs where the last proof is made as small as reasonably
    /// possible, using a high rate, high PoW bits, etc.
    #[test]
    #[ignore]
    fn test_size_optimized_recursion() -> Result<()> {
        init_logger();
        const D: usize = 2;
        type C = PoseidonGoldilocksConfig;
        type KC = KeccakGoldilocksConfig;
        type F = <C as GenericConfig<D>>::F;

        let standard_config = CircuitConfig::standard_recursion_config();

        // An initial dummy proof.
        let (proof, vd, cd) = dummy_proof::<F, C, D>(&standard_config, 4_000)?;
        assert_eq!(cd.degree_bits(), 12);

        // A standard recursive proof.
        let (proof, vd, cd) = recursive_proof(proof, vd, cd, &standard_config, None, false, false)?;
        assert_eq!(cd.degree_bits(), 12);

        // A high-rate recursive proof, designed to be verifiable with fewer routed wires.
        let high_rate_config = CircuitConfig {
            fri_config: FriConfig {
                rate_bits: 7,
                proof_of_work_bits: 16,
                num_query_rounds: 12,
                ..standard_config.fri_config.clone()
            },
            ..standard_config
        };
        let (proof, vd, cd) =
            recursive_proof::<F, C, C, D>(proof, vd, cd, &high_rate_config, None, true, true)?;
        assert_eq!(cd.degree_bits(), 12);

        // A final proof, optimized for size.
        let final_config = CircuitConfig {
            num_routed_wires: 37,
            fri_config: FriConfig {
                rate_bits: 8,
                cap_height: 0,
                proof_of_work_bits: 20,
                reduction_strategy: FriReductionStrategy::MinSize(None),
                num_query_rounds: 10,
            },
            ..high_rate_config
        };
        let (proof, vd, cd) =
            recursive_proof::<F, KC, C, D>(proof, vd, cd, &final_config, None, true, true)?;
        assert_eq!(cd.degree_bits(), 12, "final proof too large");

        test_serialization(&proof, &vd, &cd)?;

        Ok(())
    }

    #[test]
    fn test_recursive_verifier_multi_hash() -> Result<()> {
        init_logger();
        const D: usize = 2;
        type PC = PoseidonGoldilocksConfig;
        type KC = KeccakGoldilocksConfig;
        type F = <PC as GenericConfig<D>>::F;

        let config = CircuitConfig::standard_recursion_config();
        let (proof, vd, cd) = dummy_proof::<F, PC, D>(&config, 4_000)?;

        let (proof, vd, cd) =
            recursive_proof::<F, PC, PC, D>(proof, vd, cd, &config, None, false, false)?;
        test_serialization(&proof, &vd, &cd)?;

        let (proof, vd, cd) =
            recursive_proof::<F, KC, PC, D>(proof, vd, cd, &config, None, false, false)?;
        test_serialization(&proof, &vd, &cd)?;

        Ok(())
    }

    type Proof<F, C, const D: usize> = (
        ProofWithPublicInputs<F, C, D>,
        VerifierOnlyCircuitData<C, D>,
        CommonCircuitData<F, D>,
    );

    /// Creates a dummy proof which should have roughly `num_dummy_gates` gates.
    fn dummy_proof<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>(
        config: &CircuitConfig,
        num_dummy_gates: u64,
    ) -> Result<Proof<F, C, D>> {
        let mut builder = CircuitBuilder::<F, D>::new(config.clone());
        for _ in 0..num_dummy_gates {
            builder.add_gate(NoopGate, vec![]);
        }

        let data = builder.build::<C>();
        let inputs = PartialWitness::new();
        let proof = data.prove(inputs)?;
        data.verify(proof.clone())?;

        Ok((proof, data.verifier_only, data.common))
    }

    fn recursive_proof<
        F: RichField + Extendable<D>,
        C: GenericConfig<D, F = F>,
        InnerC: GenericConfig<D, F = F>,
        const D: usize,
    >(
        inner_proof: ProofWithPublicInputs<F, InnerC, D>,
        inner_vd: VerifierOnlyCircuitData<InnerC, D>,
        inner_cd: CommonCircuitData<F, D>,
        config: &CircuitConfig,
        min_degree_bits: Option<usize>,
        print_gate_counts: bool,
        print_timing: bool,
    ) -> Result<Proof<F, C, D>>
    where
        InnerC::Hasher: AlgebraicHasher<F>,
    {
        let mut builder = CircuitBuilder::<F, D>::new(config.clone());
        let mut pw = PartialWitness::new();
        let pt = builder.add_virtual_proof_with_pis(&inner_cd);
        pw.set_proof_with_pis_target(&pt, &inner_proof);

        let inner_data = builder.add_virtual_verifier_data(inner_cd.config.fri_config.cap_height);
        pw.set_cap_target(
            &inner_data.constants_sigmas_cap,
            &inner_vd.constants_sigmas_cap,
        );
        pw.set_hash_target(inner_data.circuit_digest, inner_vd.circuit_digest);

        builder.verify_proof::<InnerC>(&pt, &inner_data, &inner_cd);

        if print_gate_counts {
            builder.print_gate_counts(0);
        }

        if let Some(min_degree_bits) = min_degree_bits {
            // We don't want to pad all the way up to 2^min_degree_bits, as the builder will add a
            // few special gates afterward. So just pad to 2^(min_degree_bits - 1) + 1. Then the
            // builder will pad to the next power of two, 2^min_degree_bits.
            let min_gates = (1 << (min_degree_bits - 1)) + 1;
            for _ in builder.num_gates()..min_gates {
                builder.add_gate(NoopGate, vec![]);
            }
        }

        let data = builder.build::<C>();

        let mut timing = TimingTree::new("prove", Level::Debug);
        let proof = prove(&data.prover_only, &data.common, pw, &mut timing)?;
        if print_timing {
            timing.print();
        }

        data.verify(proof.clone())?;

        Ok((proof, data.verifier_only, data.common))
    }

    /// Test serialization and print some size info.
    fn test_serialization<
        F: RichField + Extendable<D>,
        C: GenericConfig<D, F = F>,
        const D: usize,
    >(
        proof: &ProofWithPublicInputs<F, C, D>,
        vd: &VerifierOnlyCircuitData<C, D>,
        cd: &CommonCircuitData<F, D>,
    ) -> Result<()> {
        let proof_bytes = proof.to_bytes();
        info!("Proof length: {} bytes", proof_bytes.len());
        let proof_from_bytes = ProofWithPublicInputs::from_bytes(proof_bytes, cd)?;
        assert_eq!(proof, &proof_from_bytes);

        let now = std::time::Instant::now();
        let compressed_proof = proof.clone().compress(&vd.circuit_digest, cd)?;
        let decompressed_compressed_proof = compressed_proof
            .clone()
            .decompress(&vd.circuit_digest, cd)?;
        info!("{:.4}s to compress proof", now.elapsed().as_secs_f64());
        assert_eq!(proof, &decompressed_compressed_proof);

        let compressed_proof_bytes = compressed_proof.to_bytes();
        info!(
            "Compressed proof length: {} bytes",
            compressed_proof_bytes.len()
        );
        let compressed_proof_from_bytes =
            CompressedProofWithPublicInputs::from_bytes(compressed_proof_bytes, cd)?;
        assert_eq!(compressed_proof, compressed_proof_from_bytes);

        Ok(())
    }

    fn init_logger() {
        let _ = env_logger::builder().format_timestamp(None).try_init();
    }
}