1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Don't make `globe` public; we re-export the
// main bits at this level below.
mod globe;
mod globe_ext;
pub mod icosahedron;
mod spec;
pub mod chunk;
mod view;
mod gen;
mod chunk_view;
mod chunk_view_system;
mod chunk_system;
mod cursor;
mod chunk_origin;
mod iters;
mod chunk_shared_points;
mod chunk_pair;

#[cfg(test)]
mod tests;

use types::*;

// TODO: be selective in what you export; no wildcards!
pub use self::globe::Globe;
pub use self::spec::*;
pub use self::view::*;
pub use self::chunk_view::*;
pub use self::chunk_view_system::*;
pub use self::chunk_system::ChunkSystem;
pub use self::cursor::{Cursor, CursorMut};
pub use self::chunk_origin::*;
pub use self::iters::*;
pub use self::chunk_shared_points::ChunkSharedPoints;

use grid::{GridCoord, GridPoint3, Root, PosInOwningRoot};

// TODO: move project into icosahedron module.

// Project a position in a given root quad into a unit sphere.
// Assumes that one corner is represented in `pt_in_root_quad`
// as (0, 0) and the opposite is (1, 1).
#[cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))]
pub fn project(root: Root, mut pt_in_root_quad: Pt2) -> Pt3 {
    // An icosahedron can be flattened into a net comprising 20 triangles:
    //
    //      ●     ●     ●     ●     ●
    //     / \   / \   / \   / \   / \
    //    /   \ /   \ /   \ /   \ /   \
    //   ●-----●-----●-----●-----●-----●
    //    \   / \   / \   / \   / \   / \
    //     \ /   \ /   \ /   \ /   \ /   \
    //      ●-----●-----●-----●-----●-----●
    //       \   / \   / \   / \   / \   /
    //        \ /   \ /   \ /   \ /   \ /
    //         ●     ●     ●     ●     ●
    //
    // We can then break this into 5 "root quads", each of which comprises
    // a strip of four triangles running all the way from the north pole
    // of the globe down to the south. These root quads are twice as long
    // (y-axis) as they are wide (x-axis).
    //
    // Highlighting the first quad:
    //
    //      ●     ◌     ◌     ◌     ◌
    //     /·\   / \   / \   / \   / \
    //    /···\ /   \ /   \ /   \ /   \
    //   ● - - ●-----◌-----◌-----◌-----◌
    //    \···/·\   / \   / \   / \   / \
    //     \·/···\ /   \ /   \ /   \ /   \
    //      ● - - ●-----◌-----◌-----◌-----◌
    //       \···/ \   / \   / \   / \   /
    //        \·/   \ /   \ /   \ /   \ /
    //         ●     ◌     ◌     ◌     ◌
    //
    // So we need to set up some points and vectors based on the
    // root we're operating in, and then the math depends on which
    // triangle `pt_in_root_quad` is in.
    //
    // In the diagram below, each point is labelled with this information
    // in the same order:
    //
    //   - A name for this vertex (e.g. 'a') for use in calculations below
    //   - The (x, y) coordinates for this vertex in voxmap space
    //   - The indexes of the triangle, and the index of the vertex within
    //     each triangle, expressed as `i_j`. For many vertices there will
    //     be multiple triangles containing it.
    //
    //                   a (0, 0)
    //                     0_0
    //                 ●
    //                / \
    //               /   \
    //     b        /  0  \     c (0, 1)
    //   (1, 0)    /       \      0_2
    //    0_1     ●---------●     1_1
    //    1_2      \       / \    2_0
    //              \  1  /   \
    //               \   /  2  \
    //         d      \ /       \
    //       (1, 1)    ●---------●    e (0, 2)
    //         1_0      \       /       2_2
    //         2_1       \  3  /        3_1
    //         3_2        \   /
    //                     \ /
    //               f      ●
    //             (1, 2)
    //              3_0
    //
    // TODO: cache all this stuff somewhere. It's tiny, and we'll use it heaps.
    use self::icosahedron::{FACES, VERTICES};
    let triangle_indices = [
        root.index as usize * 4,
        root.index as usize * 4 + 1,
        root.index as usize * 4 + 2,
        root.index as usize * 4 + 3,
    ];
    let faces = [
        FACES[triangle_indices[0]],
        FACES[triangle_indices[1]],
        FACES[triangle_indices[2]],
        FACES[triangle_indices[3]],
    ];
    let a: Pt3 = Pt3::new(
        VERTICES[faces[0][0]][0],
        VERTICES[faces[0][0]][1],
        VERTICES[faces[0][0]][2],
    );
    let b: Pt3 = Pt3::new(
        VERTICES[faces[0][1]][0],
        VERTICES[faces[0][1]][1],
        VERTICES[faces[0][1]][2],
    );
    let c: Pt3 = Pt3::new(
        VERTICES[faces[1][1]][0],
        VERTICES[faces[1][1]][1],
        VERTICES[faces[1][1]][2],
    );
    let d: Pt3 = Pt3::new(
        VERTICES[faces[1][0]][0],
        VERTICES[faces[1][0]][1],
        VERTICES[faces[1][0]][2],
    );
    let e: Pt3 = Pt3::new(
        VERTICES[faces[3][1]][0],
        VERTICES[faces[3][1]][1],
        VERTICES[faces[3][1]][2],
    );
    let f: Pt3 = Pt3::new(
        VERTICES[faces[3][0]][0],
        VERTICES[faces[3][0]][1],
        VERTICES[faces[3][0]][2],
    );

    // Triangle 0
    let ab = b - a;
    let ac = c - a;
    // Triangle 1
    let db = b - d;
    let dc = c - d;
    // Triangle 2
    let cd = d - c;
    let ce = e - c;
    // Triangle 3
    let fd = d - f;
    let fe = e - f;

    // It'll be easier to do the math we need here if the positions
    // lie between (0, 0) and (1, 2).
    pt_in_root_quad[1] *= 2.0;

    // Decide which triangle we're in.
    let pos_on_icosahedron = if pt_in_root_quad[0] + pt_in_root_quad[1] < 1.0 {
        // In triangle 0.
        a + ab * pt_in_root_quad[0] + ac * pt_in_root_quad[1]
    } else if pt_in_root_quad[1] < 1.0 {
        // In triangle 1.
        d + dc * (1.0 - pt_in_root_quad[0]) + db * (1.0 - pt_in_root_quad[1])
    } else if pt_in_root_quad[0] + pt_in_root_quad[1] < 2.0 {
        // In triangle 2.
        // Bring the y-value back into [0, 1] so we can just repeat the math from above.
        pt_in_root_quad[1] -= 1.0;
        c + cd * pt_in_root_quad[0] + ce * pt_in_root_quad[1]
    } else {
        // In triangle 3.
        // Bring the y-value back into [0, 1] so we can just repeat the math from above.
        pt_in_root_quad[1] -= 1.0;
        f + fe * (1.0 - pt_in_root_quad[0]) + fd * (1.0 - pt_in_root_quad[1])
    };
    Pt3::from_coordinates(pos_on_icosahedron.coords.normalize())
}

/// Calculate the origin of a chunk that contains the given `pos`,
/// with the guarantee that the chunk will be in the same root even
/// if `pos` is on the edge of that root.
///
/// Note that this pays no attention to what chunk _owns_ the cell,
/// so you should assume that any chunk in this root that contains
/// the position at all may be returned.
pub fn origin_of_chunk_in_same_root_containing(
    pos: GridPoint3,
    root_resolution: [GridCoord; 2],
    chunk_resolution: [GridCoord; 3],
) -> ChunkOrigin {
    // Calculate x-position of a containing chunk.
    let end_x = root_resolution[0];
    let chunk_origin_x = if pos.x == end_x {
        // Instead of trying to find a chunk beyond those that exist,
        // just use the last chunk in the x-direction; `pos` is in that.
        (end_x / chunk_resolution[0] - 1) * chunk_resolution[0]
    } else {
        pos.x / chunk_resolution[0] * chunk_resolution[0]
    };

    // Calculate y-position of a containing chunk.
    let end_y = root_resolution[1];
    let chunk_origin_y = if pos.y == end_y {
        // Instead of trying to find a chunk beyond those that exist,
        // just use the last chunk in the y-direction; `pos` is in that.
        (end_y / chunk_resolution[1] - 1) * chunk_resolution[1]
    } else {
        pos.y / chunk_resolution[1] * chunk_resolution[1]
    };

    // Z-position is easy; there's no sharing of cells on the z-axis.
    let chunk_origin_z = pos.z / chunk_resolution[2] * chunk_resolution[2];

    ChunkOrigin::new(
        GridPoint3::new(pos.root, chunk_origin_x, chunk_origin_y, chunk_origin_z),
        root_resolution,
        chunk_resolution,
    )
}

pub fn origin_of_chunk_owning(
    pos_in_owning_root: PosInOwningRoot,
    root_resolution: [GridCoord; 2],
    chunk_resolution: [GridCoord; 3],
) -> ChunkOrigin {
    let pos: GridPoint3 = pos_in_owning_root.into();

    // Figure out what chunk this is in.
    let end_x = root_resolution[0];
    let end_y = root_resolution[1];
    let last_chunk_x = (end_x / chunk_resolution[0] - 1) * chunk_resolution[0];
    let last_chunk_y = (end_y / chunk_resolution[1] - 1) * chunk_resolution[1];
    // Cells aren't shared by chunks in the z-direction, so the z-origin
    // is the same across all cases. Small mercies.
    let chunk_origin_z = pos.z / chunk_resolution[2] * chunk_resolution[2];
    if pos.x == 0 && pos.y == 0 {
        // Chunk at (0, 0) owns north pole.
        ChunkOrigin::new(
            GridPoint3::new(pos.root, 0, 0, chunk_origin_z),
            root_resolution,
            chunk_resolution,
        )
    } else if pos.x == end_x && pos.y == end_y {
        // Chunk at (last_chunk_x, last_chunk_y) owns south pole.
        ChunkOrigin::new(
            GridPoint3::new(pos.root, last_chunk_x, last_chunk_y, chunk_origin_z),
            root_resolution,
            chunk_resolution,
        )
    } else {
        // Chunks own cells on their edge at `local_x == 0`, and their edge at `local_y == chunk_resolution`.
        // The cells on other edges belong to adjacent chunks.
        let chunk_origin_x = pos.x / chunk_resolution[0] * chunk_resolution[0];
        // Shift everything down by one in y-direction.
        let chunk_origin_y = (pos.y - 1) / chunk_resolution[1] * chunk_resolution[1];
        ChunkOrigin::new(
            GridPoint3::new(pos.root, chunk_origin_x, chunk_origin_y, chunk_origin_z),
            root_resolution,
            chunk_resolution,
        )
    }
}

pub fn is_point_on_chunk_edge(point: GridPoint3, chunk_resolution: [GridCoord; 3]) -> bool {
    (point.x % chunk_resolution[0]) == point.x
    ||
    (point.y % chunk_resolution[1]) == point.y
    ||
    (point.z % chunk_resolution[2]) == point.z
    ||
    // Last z-coordinate of cell is _just before_ the next multiple
    // of chunk z-resolution.
    ((point.z + 1) % chunk_resolution[2]) == (point.z + 1)
}