1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#![warn(clippy::restriction)]
/*! # Two Dimensional Plane
Continuous 2D data structure representing infinite 2d plane.
The purpose of this crate is to provide a universal data structure that is faster
than a naive`HashMap<(i32, i32), T>`
solution.

This crate will always provide a 2D data structure. If you need three or more dimensions take a look at the
other libraries. The `grid` crate is a container for all kinds of data that implement [`Default`] trait.
You can use [`Option<T>`] to store any kind of data.
No other dependencies except for the std lib are used.
Most of the functions `std::Vec<T>` offer are also implemented in `grid` and slightly modified for a 2D data object.

# Memory layout
Uses [grid](https://docs.rs/grid/0.14.0/grid/) crate to store a dense chunk of the grid and `HashMap<(i32, i32), T>`
to store cells that are out of bounds fo the `[Grid<T>]` */

#[cfg(all(not(feature = "i32"), not(feature = "i64")))]
compile_error!("either feature \"i32\" or \"i64\" must be enabled");

#[cfg(all(feature = "i32", feature = "i64"))]
compile_error!("feature \"i32\" and feature \"i64\" cannot be enabled at the same time");

pub mod immutable;

use grid::{Grid, Order};
use immutable::Immutable;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::hash::{BuildHasher, RandomState};

#[cfg(feature = "i32")]
type Scalar = i32;

#[cfg(feature = "i64")]
type Scalar = i64;

trait GridTrait<T> {
    fn into_iter_indexed(self) -> impl Iterator<Item = ((usize, usize), T)>;
}

impl<T> GridTrait<T> for Grid<T> {
    fn into_iter_indexed(self) -> impl Iterator<Item = ((usize, usize), T)> {
        let order = self.order();
        let cols = self.cols();
        let rows = self.rows();

        self.into_vec()
            .into_iter()
            .enumerate()
            .map(move |(idx, i)| {
                let position = match order {
                    Order::RowMajor => (idx / cols, idx % cols),
                    Order::ColumnMajor => (idx % rows, idx / rows),
                };
                (position, i)
            })
    }
}

/// Stores elements of a certain type in a 2D grid structure on the whole 2D plane-2d, even in negative direction.
///
/// Uses [`Grid<T>`] type in a [grid](https://docs.rs/grid/0.14.0/grid/) crate
/// and a
#[cfg_attr(feature = "i32", doc = "`HashMap<(i32, i32), T>`")]
#[cfg_attr(feature = "i64", doc = "`HashMap<(i64, i64), T>`")]
///  to store data on the heap.
///
/// Data in [`Grid<T>`] is stored inside one dimensional array using [`Vec<T>`].
/// This is cash efficient, so it is recommended to store there dense regions of data,
/// but it is memory inefficient - it keeps memory for `rows * cols` cells,
/// so if there are only two cells in use - one is placed on coordinate `(0,0)` and other is on `(100,100)`,
/// there is space reserved for at least `10000` elements.
///
/// Using [`HashMap`] solves that problem - it stores data outside the grid bounds.
///
/// Note that if the size of the Grid is zero, this data structure is identical to the
#[cfg_attr(feature = "i32", doc = "`HashMap<(i32, i32), T>`,")]
#[cfg_attr(feature = "i64", doc = "`HashMap<(i64, i64), T>`,")]
/// and it'll be more effective to just use
#[cfg_attr(feature = "i32", doc = "`HashMap<(i32, i32), T>`,")]
#[cfg_attr(feature = "i64", doc = "`HashMap<(i64, i64), T>`")]
/// since in this case you'll get rid of any unnecessary checks.
///
/// `T` should implement [`Default`] trait, because the plain is infinitely large,
/// and you can access any point of it at any time.
/// Whenever uninitialized cell is accessed, default value is returned.
/// For optionally initialized data use [`Option<T>`].
///
/// The size limit for the grid is `rows * cols < usize`.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Plane<T: Default, S: Default + BuildHasher = RandomState> {
    grid: Grid<T>,
    offset: (Scalar, Scalar),
    map: HashMap<(Scalar, Scalar), T, S>,

    /// Is referenced by [`get`] function, because it requires immutable reference to `self`,
    /// and in case of the value being uninitialized, function should return reference to something with the lifetime of `self`.
    default_value: Immutable<T>,
}

impl<T: Default> Default for Plane<T, RandomState> {
    /// Creates new `Plane<T>` with internal `Grid<T>` of size 0.
    /// Basically identical to
    #[cfg_attr(feature = "i32", doc = "`HashMap<(i32, i32), T>`,")]
    #[cfg_attr(feature = "i64", doc = "`HashMap<(i64, i64), T>`,")]
    /// better use it instead, because Plane will be doing unnecessary comparisons
    fn default() -> Self {
        Self {
            grid: Grid::new(0, 0),
            offset: (0, 0),
            map: HashMap::default(),
            default_value: Immutable::default(),
        }
    }
}

impl<T: Default, S: Default + BuildHasher> Plane<T, S> {
    #[inline]
    pub fn rows_cols(x_min: Scalar, y_min: Scalar, x_max: Scalar, y_max: Scalar) -> (usize, usize) {
        ((x_max - x_min + 1) as usize, (y_max - y_min + 1) as usize)
    }

    /// Returns [`Plane`] whose array-based grid is within specified bounds
    pub fn new(x_min: Scalar, y_min: Scalar, x_max: Scalar, y_max: Scalar) -> Self {
        let (rows, cols): (usize, usize) = Self::rows_cols(x_min, y_min, x_max, y_max);
        Self::from_grid_and_hash_map(Grid::new(rows, cols), HashMap::default(), x_min, y_min)
    }

    #[inline]
    pub fn inner_grid(&self) -> &Grid<T> {
        &self.grid
    }
    #[inline]
    pub fn inner_grid_mut(&mut self) -> &mut Grid<T> {
        &mut self.grid
    }
    #[inline]
    pub fn inner_hash_map(&self) -> &HashMap<(Scalar, Scalar), T, S> {
        &self.map
    }
    #[inline]
    pub fn inner_hash_map_mut(&mut self) -> &mut HashMap<(Scalar, Scalar), T, S> {
        &mut self.map
    }

    pub fn from_hash_map(
        map: HashMap<(Scalar, Scalar), T, S>,
        x_min: Scalar,
        y_min: Scalar,
        x_max: Scalar,
        y_max: Scalar,
    ) -> Self {
        let mut plane = Self::from_grid_and_hash_map(Grid::new(0, 0), map, 0, 0);
        plane.relocate_grid(x_min, x_max, y_min, y_max);
        plane
    }

    #[inline]
    pub fn from_grid(grid: Grid<T>, x_min: Scalar, y_min: Scalar) -> Self {
        Self::from_grid_and_hash_map(grid, HashMap::default(), x_min, y_min)
    }

    /// Creates instance of [`Plane<T>`] from [`Grid<T>`] and [`HashMap<(Scalar, Scalar), T>`]
    /// # Note
    /// Doesn't remove items from `map` if they are initialized and overlapping with `grid`. Their existence will be ignored.
    /// When you are calling [`inner_hash_map`], [`inner_hash_map_mut`], [`iter_all`], [`iter_all_mut`] or [`into_iter_all`] 
    /// those values may or may not still exist in the hash map. 
    pub fn from_grid_and_hash_map(
        grid: Grid<T>,
        map: HashMap<(Scalar, Scalar), T, S>,
        x_min: Scalar,
        y_min: Scalar,
    ) -> Self {
        Self {
            grid,
            offset: (-x_min, -y_min),
            map,
            default_value: Immutable::default(),
        }
    }

    pub fn into_hash_map(self) -> HashMap<(Scalar, Scalar), T, S> {
        let mut map = self.map;

        for ((x, y), val) in self.grid.into_iter_indexed() {
            let vec = (x as Scalar - self.offset.0, y as Scalar - self.offset.1);
            map.insert(vec, val);
        }

        map
    }

    pub fn global_coordinates_from_grid(&self, x: usize, y: usize) -> (Scalar, Scalar) {
        let x = x as Scalar - self.offset.0;
        let y = y as Scalar - self.offset.1;
        (x, y)
    }

    pub fn grid_coordinates_from_global(&self, x: Scalar, y: Scalar) -> Option<(usize, usize)> {
        let x = x + self.offset.0;
        let y = y + self.offset.1;

        if 0 <= x && x < self.grid.rows() as Scalar && 0 <= y && y < self.grid.cols() as Scalar {
            Some((x as usize, y as usize))
        } else {
            None
        }
    }

    /// Returns a reference to an element that should be contained in `Grid<T>` container without performing bound checks.
    /// Generally not recommended, use with caution!
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
    pub unsafe fn get_unchecked(&self, x: Scalar, y: Scalar) -> &T {
        let x = (x + self.offset.0) as usize;
        let y = (y + self.offset.1) as usize;

        self.grid.get_unchecked(x, y)
    }

    /// Returns a mutable reference to an element that should be contained in `Grid<T>` container without performing bound checks.
    /// Generally not recommended, use with caution!
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
    pub unsafe fn get_unchecked_mut(&mut self, x: Scalar, y: Scalar) -> &mut T {
        let x = (x + self.offset.0) as usize;
        let y = (y + self.offset.1) as usize;

        self.grid.get_unchecked_mut(x, y)
    }

    /// Access a certain element on the plane-2d.
    /// Returns [`default`] value if uninitialized element is being accessed.
    pub fn get(&self, x: Scalar, y: Scalar) -> &T {
        if let Some((x, y)) = self.grid_coordinates_from_global(x, y) {
            // Safety: `grid_coordinates_from_global` is guaranteed to return Some
            // whenever the coords are within the bounds of internal grid
            unsafe { self.grid.get_unchecked(x, y) }
        } else {
            let val = self.map.get(&(x, y));

            val.unwrap_or(&self.default_value)
        }
    }

    /// Mutable access to a certain element on the plane-2d.
    /// Returns [`default`] value if uninitialized element is being accessed.
    pub fn get_mut(&mut self, x: Scalar, y: Scalar) -> &mut T {
        if let Some((x, y)) = self.grid_coordinates_from_global(x, y) {
            // Safety: `grid_coordinates_from_global` is guaranteed to return Some
            // whenever the coords are within the bounds of internal grid
            unsafe { self.grid.get_unchecked_mut(x, y) }
        } else {
            self.map.entry((x, y)).or_default()
        }
    }

    /// Insert element at the coordinate.
    /// Returns [`default`] value if uninitialized element is being accessed.
    pub fn insert(&mut self, value: T, x: Scalar, y: Scalar) -> T {
        if let Some((x, y)) = self.grid_coordinates_from_global(x, y) {
            // Safety: safe since `within_grid_bounds` is guaranteed to return true
            // whenever the coords are within the bounds of internal grid
            std::mem::replace(unsafe { self.grid.get_unchecked_mut(x, y) }, value)
        } else {
            self.map.insert((x, y), value).unwrap_or_default()
        }
    }

    /// Changes position of  the base grid structure.
    /// Iterates over all elements in previous grid and all elements in new grid
    pub fn relocate_grid(&mut self, x_min: Scalar, y_min: Scalar, x_max: Scalar, y_max: Scalar) {
        let (rows, cols) = Self::rows_cols(x_min, y_min, x_max, y_max);
        let mut new_grid = Grid::new(rows, cols);

        let old_grid = std::mem::replace(&mut self.grid, Grid::new(0, 0));

        for ((x, y), val) in old_grid.into_iter_indexed() {
            let vec = self.global_coordinates_from_grid(x, y);
            self.map.insert(vec, val);
        }

        for ((x, y), val) in new_grid.indexed_iter_mut() {
            let vec = self.global_coordinates_from_grid(x, y);
            *val = self.map.remove(&vec).unwrap_or_default();
        }

        self.grid = new_grid;
        self.offset = (-x_min, -y_min);
    }

    /// Iterates over all the items within the rectangle area inclusively.    
    /// Returns [`default`] value if uninitialized element is being accessed.
    /// Order of iteration deterministic for now, but can change in future versions .
    pub fn foreach_in_area(
        &self,
        x_min: Scalar,
        y_min: Scalar,
        x_max: Scalar,
        y_max: Scalar,
        mut f: impl FnMut(&T, Scalar, Scalar),
    ) {
        // TODO: more effective algorithm
        for x in x_min..=x_max {
            for y in y_min..=y_max {
                f(self.get(x, y), x, y);
            }
        }
    }

    /// Mutably iterates over all the items within the rectangle area inclusively.
    /// Returns [`default`] value if uninitialized element is being accessed.
    /// Order of iteration deterministic for now, but can change in future versions .
    pub fn foreach_in_area_mut(
        &mut self,
        x_min: Scalar,
        y_min: Scalar,
        x_max: Scalar,
        y_max: Scalar,
        mut f: impl FnMut(&mut T, Scalar, Scalar),
    ) {
        // TODO: more effective algorithm
        for x in x_min..=x_max {
            for y in y_min..=y_max {
                f(self.get_mut(x, y), x, y);
            }
        }
    }
    
    /// Iterate over all the elements stored inside the grid and hashmap. May return value from HashMap even if it is overlapping with Grid   
    pub fn iter_all(&self) -> impl Iterator<Item = ((Scalar, Scalar), &T)> {
        self.grid
            .indexed_iter()
            .map(move |((x, y), elem)| {
                (
                    (x as Scalar - self.offset.0, y as Scalar - self.offset.1),
                    elem,
                )
            })
            .chain(self.map.iter().map(|(vec, elem)| (*vec, elem)))
    }

    /// Mutably iterate over all the elements stored inside the grid and hashmap. May return value from HashMap even if it is overlapping with Grid   
    pub fn iter_all_mut(&mut self) -> impl Iterator<Item = ((Scalar, Scalar), &mut T)> {
        let offset = self.offset;

        self.grid
            .indexed_iter_mut()
            .map(move |((x, y), elem)| ((x as Scalar - offset.0, y as Scalar - offset.1), elem))
            .chain(self.map.iter_mut().map(|(vec, elem)| (*vec, elem)))
    }

    /// Iterate over all the elements stored inside the grid and hashmap. May return value from HashMap even if it is overlapping with Grid   
    pub fn into_iter_all(self) -> impl Iterator<Item = ((Scalar, Scalar), T)> {
        self.grid
            .into_iter_indexed()
            .map(move |((x, y), elem)| {
                (
                    (x as Scalar - self.offset.0, y as Scalar - self.offset.1),
                    elem,
                )
            })
            .chain(self.map.into_iter())
    }
}

impl<T, S: Default + BuildHasher> Plane<Option<T>, S> {
    /// Iterate over all the initialized elements
    pub fn iter(&self) -> impl Iterator<Item = ((Scalar, Scalar), &T)> {
        self.grid
            .indexed_iter()
            .filter_map(move |((x, y), elem)| {
                elem.as_ref().map(|el| {
                    (
                        (x as Scalar - self.offset.0, y as Scalar - self.offset.1),
                        el,
                    )
                })
            })
            .chain(
                self.map
                    .iter()
                    .filter_map(|(vec, elem)| elem.as_ref().map(|el| (*vec, el))),
            )
    }

    /// Mutably iterate over all the initialized elements
    pub fn iter_mut(&mut self) -> impl Iterator<Item = ((Scalar, Scalar), &mut T)> {
        let offset = self.offset;

        self.grid
            .indexed_iter_mut()
            .filter_map(move |((x, y), elem)| {
                elem.as_mut()
                    .map(|el| ((x as Scalar - offset.0, y as Scalar - offset.1), el))
            })
            .chain(
                self.map
                    .iter_mut()
                    .filter_map(|(vec, elem)| elem.as_mut().map(|el| (*vec, el))),
            )
    }

    /// Consume plane-2d to get all the initialized elements
    pub fn into_iter(self) -> impl Iterator<Item = ((Scalar, Scalar), T)> {
        self.grid
            .into_iter_indexed()
            .filter_map(move |((x, y), elem)| {
                elem.map(|el| {
                    (
                        (x as Scalar - self.offset.0, y as Scalar - self.offset.1),
                        el,
                    )
                })
            })
            .chain(
                self.map
                    .into_iter()
                    .filter_map(|(vec, elem)| elem.map(|el| (vec, el))),
            )
    }
}

impl<T: Default, S: Default + BuildHasher> From<Grid<T>> for Plane<T, S> {
    fn from(value: Grid<T>) -> Self {
        Self::from_grid(value, 0, 0)
    }
}

impl<T: Default, S: Default + BuildHasher> From<HashMap<(Scalar, Scalar), T, S>> for Plane<T, S> {
    fn from(value: HashMap<(Scalar, Scalar), T, S>) -> Self {
        Self::from_hash_map(value, 0, 0, 0, 0)
    }
}

#[cfg(test)]
mod tests {
    use super::Plane;
    use grid::{grid, Grid};
    use std::collections::HashMap;

    #[test]
    fn test_iter() {
        let grid: Grid<Option<i32>> = grid![
            [Some(1), Some(2)]
            [Some(3), Some(4)]
        ];
        let mut hash_map = HashMap::new();
        hash_map.insert((23, 40), Some(19));
        hash_map.insert((40, 40), Some(13));
        let plane: Plane<Option<i32>> = Plane::from_grid_and_hash_map(grid, hash_map, 2, 2);

        let mut elements: Vec<_> = plane.iter().map(|(a, v)| (a, *v)).collect();
        elements.sort_by(|(_, v1), (_, v2)| v1.cmp(v2));

        assert_eq!(
            elements,
            vec![
                ((2, 2), 1),
                ((2, 3), 2),
                ((3, 2), 3),
                ((3, 3), 4),
                ((40, 40), 13),
                ((23, 40), 19),
            ]
        );
    }

    #[test]
    fn test_iter_mut() {
        let grid: Grid<Option<i32>> = grid![
            [Some(1), Some(2)]
            [Some(3), Some(4)]
        ];
        let mut hash_map = HashMap::new();
        hash_map.insert((23, 40), Some(19));
        hash_map.insert((40, 40), Some(13));

        let mut plane: Plane<Option<i32>> = Plane::from_grid_and_hash_map(grid, hash_map, 2, 2);

        for (_, elem) in plane.iter_mut() {
            *elem += 1;
        }

        let mut elements: Vec<_> = plane.iter().map(|(a, v)| (a, *v)).collect();
        elements.sort_by(|(_, v1), (_, v2)| v1.cmp(v2));

        assert_eq!(
            elements,
            vec![
                ((2, 2), 2),
                ((2, 3), 3),
                ((3, 2), 4),
                ((3, 3), 5),
                ((40, 40), 14),
                ((23, 40), 20),
            ]
        );
    }

    #[test]
    fn test_into_iter() {
        let grid: Grid<Option<i32>> = grid![
            [Some(1), Some(2)]
            [Some(3), Some(4)]
        ];
        let mut hash_map = HashMap::new();
        hash_map.insert((23, 40), Some(19));
        hash_map.insert((40, 40), Some(13));
        let plane: Plane<Option<i32>> = Plane::from_grid_and_hash_map(grid, hash_map, 2, 2);

        let mut elements: Vec<_> = plane.into_iter().collect();
        elements.sort_by(|(_, v1), (_, v2)| v1.cmp(v2));

        assert_eq!(
            elements,
            vec![
                ((2, 2), 1),
                ((2, 3), 2),
                ((3, 2), 3),
                ((3, 3), 4),
                ((40, 40), 13),
                ((23, 40), 19),
            ]
        );
    }

    #[test]
    fn test_default_initialization() {
        let plane: Plane<Option<()>> = Plane::default();
        let elements: Vec<_> = plane.into_iter().collect();

        assert_eq!(elements.len(), 0);
    }

    #[test]
    fn test_remove_element() {
        let mut plane = Plane::default();

        assert_eq!(plane.insert(Some(5), 1, 1), None);
        assert_eq!(*plane.get(1, 1), Some(5));
    }

    #[test]
    fn test_get_element_mut() {
        let mut plane = Plane::default();
        plane.insert(Some(8), 1, 1);
        if let Some(elem) = plane.get_mut(1, 1) {
            *elem = 10;
        }
        assert_eq!(*plane.get(1, 1), Some(10));
    }
}