1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
//! XPBD based physics engine.
//!
//! Based on: https://matthias-research.github.io/pages/publications/PBDBodies.pdf
pub mod collision;
pub mod constraint;
pub mod rigidbody;
use bvh_arena::{volumes::Aabb, Bvh};
use hecs::{Component, ComponentRef, Entity, Satisfies, World};
use serde::Deserialize;
use vek::{Aabr, Vec2};
use crate::{
math::Iso,
physics::rigidbody::{Collider, Kinematic, Orientation, Position, Translation, Velocity},
};
use self::{
collision::{CollisionResponse, CollisionState},
constraint::{penetration::PenetrationConstraint, Constraint},
rigidbody::{RigidBodyHandle, RigidBodyQuery, RigidBodySystems},
};
/// Rigid body index type.
pub type RigidBodyKey = Entity;
/// Physics simulation state.
pub struct Physics {
/// All entities.
world: World,
/// Rigidbody references and handles.
rigidbodies: RigidBodySystems,
/// Penetration constraints.
penetration_constraints: Vec<PenetrationConstraint>,
/// Cache of broad phase collisions.
///
/// This is a performance optimization so the vector doesn't have to be allocated every step.
broad_phase_collisions: Vec<(RigidBodyKey, RigidBodyKey)>,
/// Narrow phase collision state cache.
///
/// This is a performance optimization so the vector doesn't have to be allocated many times every step.
narrow_phase_state: CollisionState<RigidBodyKey>,
}
impl Physics {
/// Create the new state.
pub fn new() -> Self {
let world = World::default();
let rigidbodies = RigidBodySystems::new();
let broad_phase_collisions = Vec::new();
let narrow_phase_state = CollisionState::new();
let penetration_constraints = Vec::new();
Self {
world,
rigidbodies,
broad_phase_collisions,
penetration_constraints,
narrow_phase_state,
}
}
/// Simulate a single step.
pub fn step(&mut self, dt: f64, settings: &PhysicsSettings) {
puffin::profile_scope!("Physics step");
// Deltatime for each sub-step
let sub_dt = dt / settings.substeps as f64;
// Clear collisions for whole step
self.narrow_phase_state.clear_step();
{
puffin::profile_scope!("Remove dropped rigidbodies");
// Destroy every rigidbody handle that has no references anymore
self.rigidbodies.destroy_dropped(&mut self.world);
}
{
puffin::profile_scope!("Reset constraints");
// Reset every constraint for calculating the sub-steps since they are iterative
self.reset_constraints();
}
{
puffin::profile_scope!("Broad phase collision detection");
// Do a broad phase collision check to get possible colliding pairs
self.collision_broad_phase(dt);
}
for _ in 0..settings.substeps {
puffin::profile_scope!("Substep");
// Integrate the rigidbodies, applying velocities and forces
self.rigidbodies
.integrate(&mut self.world, sub_dt, settings.gravity);
// Do a narrow-phase collision check and generate penetration constraints
self.collision_narrow_phase();
// Apply all constraints
self.apply_constraints(sub_dt);
// Solve the velocities
self.rigidbodies.update_velocities(&mut self.world, sub_dt);
// Solve collision velocities
self.velocity_solve(sub_dt);
// Apply translations to bodies
self.rigidbodies.apply_translation(&mut self.world);
}
/*
{
puffin::profile_scope!("Mark sleeping");
// Finalize velocity based on position offset
self.rigidbodies
.iter_mut()
.for_each(|(_, rigidbody)| rigidbody.mark_sleeping(dt));
}
*/
}
/// Remove every rigidbody.
pub fn reset(&mut self) {
self.world.clear();
}
/// Get the calculated collision pairs with collision information.
pub fn colliding_rigid_bodies(&mut self) -> &[(RigidBodyKey, RigidBodyKey, CollisionResponse)] {
&self.narrow_phase_state.substep_collisions
}
/// Whether a rigidbody is still in the grid range.
pub fn is_rigidbody_on_grid(&self, _rigidbody: &RigidBodyHandle) -> bool {
// TODO
true
}
/// Amount of rigidbodies currently registered.
pub fn rigidbody_amount(&self) -> u32 {
self.world.len()
}
/// Do a broad-phase collision pass to get possible pairs.
///
/// Fills the list of broad-phase collisions.
fn collision_broad_phase(&mut self, dt: f64) {
puffin::profile_scope!("Broad phase");
self.broad_phase_collisions.clear();
// Construct a bounding volume hierarchy to find matching pairs
let mut bvh: Bvh<RigidBodyKey, Aabb<2>> = Bvh::default();
// Fill the hierachy
for (entity, aabr) in self.predicted_aabrs(dt) {
bvh.insert(
entity,
Aabb::from_min_max(
[aabr.min.x as f32, aabr.min.y as f32],
[aabr.max.x as f32, aabr.max.y as f32],
),
);
}
puffin::profile_scope!("Transfer BVH pairs");
// Put all pairs into a separate array
bvh.for_each_overlaping_pair(|a, b| self.broad_phase_collisions.push((*a, *b)));
}
/// Do a narrow-phase collision pass to get all colliding objects.
///
/// Fills the penetration constraint list and the list of collisions.
fn collision_narrow_phase(&mut self) {
self.narrow_phase_state.clear_substep();
// Narrow-phase with SAT
for (a, b) in self.broad_phase_collisions.iter() {
puffin::profile_scope!("Narrow collision");
debug_assert_ne!(a, b);
// Rigidbody A positions and shape
let mut a_ref = self
.world
.query_one::<(
&Collider,
&Position,
Option<&Translation>,
&Orientation,
Satisfies<&Kinematic>,
)>(*a)
.expect("Rigidbody not found");
let (a_shape, a_pos, a_trans, a_rot, a_is_kinematic) = a_ref.get().unwrap();
// Rigidbody B positions and shape
let mut b_ref = self
.world
.query_one::<(
&Collider,
&Position,
Option<&Translation>,
&Orientation,
Satisfies<&Kinematic>,
)>(*b)
.expect("Rigidbody not found");
let (b_shape, b_pos, b_trans, b_rot, b_is_kinematic) = b_ref.get().unwrap();
// Don't register when both bodies are kinematic
if !a_is_kinematic || !b_is_kinematic {
self.narrow_phase_state.detect(
*a,
&a_shape.0,
Iso::new(
a_pos.0 + a_trans.map(|trans| trans.0).unwrap_or_default(),
a_rot.0,
),
*b,
&b_shape.0,
Iso::new(
b_pos.0 + b_trans.map(|trans| trans.0).unwrap_or_default(),
b_rot.0,
),
);
}
}
self.penetration_constraints.clear();
{
puffin::profile_scope!("Collision responses to penetration constraints");
// Generate penetration constraint
for (a, b, response) in self.narrow_phase_state.substep_collisions.iter() {
self.penetration_constraints
.push(PenetrationConstraint::new([*a, *b], response.clone()));
}
}
}
/// Debug information for all constraints.
pub fn debug_info_constraints(&self) -> Vec<(Vec2<f64>, Vec2<f64>, CollisionResponse)> {
puffin::profile_scope!("Debug constraint info");
// Create an ECS view for the rigidbodies, this is good for random access and performance
let mut rigidbody_query = self.world.query::<RigidBodyQuery>();
let mut rigidbodies = rigidbody_query.view();
self.penetration_constraints
.iter()
.map(|constraint| {
let [a, b] = rigidbodies
.get_mut_n([constraint.a, constraint.b])
.map(|v| v.unwrap());
(
a.local_to_world(constraint.a_attachment()),
b.local_to_world(constraint.b_attachment()),
constraint.response.clone(),
)
})
.collect()
}
/// Debug information, all vertices from all rigid bodies.
pub fn debug_info_vertices(&self) -> Vec<Vec<Vec2<f64>>> {
puffin::profile_scope!("Debug vertices info");
// Create an ECS view for the rigidbodies, this is good for random access and performance
self.world
.query::<(&Position, &Orientation, &Collider)>()
.into_iter()
.map(|(_id, (pos, rot, collider))| {
let iso = Iso::new(pos.0, rot.0);
collider.0.vertices(iso)
})
.collect()
}
/// Apply velocity corrections caused by friction and restitution.
fn velocity_solve(&mut self, sub_dt: f64) {
// Create an ECS view for the rigidbodies, this is good for random access and performance
let mut rigidbody_query = self.world.query_mut::<RigidBodyQuery>();
let mut rigidbodies = rigidbody_query.view();
self.penetration_constraints
.iter()
.for_each(|constraint| constraint.solve_velocities(&mut rigidbodies, sub_dt));
}
fn reset_constraints(&self) {
// TODO
}
fn apply_constraints(&mut self, sub_dt: f64) {
// Create an ECS view for the rigidbodies, this is good for random access and performance
let mut rigidbody_query = self.world.query_mut::<RigidBodyQuery>();
let mut rigidbodies = rigidbody_query.view();
self.penetration_constraints
.iter_mut()
.for_each(|constraint| constraint.solve(&mut rigidbodies, sub_dt));
}
/// Iterator over all predicted Axis-aligned bounding rectangles with a predicted future position added.
///
/// WARNING: `dt` is not from the substep but from the full physics step.
// PERF: make this an iterator
fn predicted_aabrs(&self, dt: f64) -> Vec<(Entity, Aabr<f64>)> {
/// How far away we predict the impulses to move us for checking the collision during the next full deltatime.
const PREDICTED_POSITION_MULTIPLIER: f64 = 2.0;
self.world
.query::<(&Position, Option<&Velocity>, &Orientation, &Collider)>()
.iter()
.map(move |(id, (pos, vel, rot, shape))| {
// First AABR at stationary position
let mut aabr = shape.0.aabr(Iso::new(pos.0, rot.0));
if let Some(vel) = vel {
// Expand to future AABR if not static
aabr.expand_to_contain(shape.0.aabr(Iso::new(
pos.0 + vel.0 * PREDICTED_POSITION_MULTIPLIER * dt,
rot.0,
)));
}
(id, aabr)
})
.collect()
}
/// Get a single entity value from a rigidbody.
///
/// Throws an error when the entity doesn't exist or doesn't contain the component.
#[inline(always)]
fn rigidbody_value<'a, T>(&'a self, rigidbody: &RigidBodyHandle) -> T::Ref
where
T: ComponentRef<'a>,
{
self.world
.get::<T>(rigidbody.entity())
.expect("Entity does not exist or has value of type")
}
/// Get a single entity value from a rigidbody that might not be set.
#[inline(always)]
fn rigidbody_opt_value<'a, T>(&'a self, rigidbody: &RigidBodyHandle) -> Option<T::Ref>
where
T: ComponentRef<'a>,
{
self.world.get::<T>(rigidbody.entity()).ok()
}
/// Get a single mutable entity value from a rigidbody.
#[inline(always)]
fn rigidbody_set_value<T>(&mut self, rigidbody: &RigidBodyHandle, value: T)
where
T: Component,
{
self.world
.insert_one(rigidbody.entity(), value)
.expect("Entity does not exist or has value of type")
}
}
impl Default for Physics {
fn default() -> Self {
Self::new()
}
}
/// Physics settings loaded from a file so it's easier to change them with hot-reloading.
#[derive(Debug, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct PhysicsSettings {
/// How many substeps are taken in a single step.
pub substeps: u8,
/// Gravity applied every frame.
pub gravity: f64,
/// Damping applied to the velocity every timestep.
pub air_friction: f64,
/// Dampling applied to the rotation every timestep.
pub rotation_friction: f64,
}
impl Default for PhysicsSettings {
fn default() -> Self {
Self {
substeps: 6,
gravity: 9.81,
air_friction: 1.0,
rotation_friction: 1.0,
}
}
}