1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#![deny(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
//
#![feature(never_type)]
#![feature(allocator_api)]
#![cfg_attr(
any(feature = "alloc", feature = "std"),
feature(new_uninit, get_mut_unchecked)
)]
//! Library to safely and fallibly initialize pinned structs using in-place constructors.
//!
//! It also allows in-place initialization of big structs that would otherwise produce a stack overflow.
//!
//! [Pinning][pinning] is Rust's way of ensuring data does not move.
//!
//! # Overview
//!
//! To initialize a struct with an in-place constructor you will need two things:
//! - an in-place constructor,
//! - a memory location that can hold your struct (this can be the [stack], an [`Arc<T>`],
//! [`Box<T>`] or any other smart pointer [^1]).
//!
//! To get an in-place constructor there are generally two options:
//! - directly creating an in-place constructor,
//! - a function/macro returning an in-place constructor.
//!
//! # Examples
//!
//! ## Directly creating an in-place constructor
//!
//! If you want to use [`PinInit`], then you will have to annotate your struct with [`#[pin_project]`].
//! It is a macro that uses `#[pin]` as a marker for [structurally pinned fields].
//!
//! ```rust
//! # mod mutex {
//! # include!("../examples/mutex.rs");
//! # };
//! # use mutex::*;
//! # use core::pin::Pin;
//! # use pinned_init::*;
//! #[pin_project]
//! struct Foo {
//! #[pin]
//! a: Mutex<usize>,
//! b: u32,
//! }
//!
//! let foo = pin_init!(Foo {
//! a: Mutex::new(42),
//! b: 24,
//! });
//! # let foo: Result<Pin<Box<Foo>>, _> = Box::pin_init::<core::convert::Infallible>(foo);
//! ```
//!
//! `foo` now is of the type `impl`[`PinInit<Foo>`]. We can now use any smart pointer that we like
//! (or just the stack) to actually initialize a `Foo`:
//!
//! ```rust
//! # mod mutex {
//! # include!("../examples/mutex.rs");
//! # };
//! # use mutex::*;
//! # use core::pin::Pin;
//! # use pinned_init::*;
//! # #[pin_project]
//! # struct Foo {
//! # #[pin]
//! # a: Mutex<usize>,
//! # b: u32,
//! # }
//! # let foo = pin_init!(Foo {
//! # a: Mutex::new(42),
//! # b: 24,
//! # });
//! let foo: Result<Pin<Box<Foo>>, _> = Box::pin_init::<core::convert::Infallible>(foo);
//! ```
//!
//! ## Using a function/macro that returns an initializer
//!
//! Many types using this library supply a function/macro that returns an initializer, because the
//! above method only works for types where you can access the fields.
//!
//! ```rust
//! # mod mutex {
//! # include!("../examples/mutex.rs");
//! # };
//! # use mutex::*;
//! # use std::{pin::Pin,sync::Arc};
//! # use pinned_init::*;
//! let mtx: Result<Pin<Arc<Mutex<usize>>>, _> = Arc::pin_init(Mutex::new(42));
//! ```
//!
//! To declare an init macro/function you just return an `impl`[`PinInit<T, E>`]:
//! ```rust
//! # mod mutex {
//! # include!("../examples/mutex.rs");
//! # };
//! # use mutex::*;
//! # use pinned_init::*;
//! # use core::convert::Infallible;
//! #[pin_project]
//! struct DriverData {
//! #[pin]
//! status: Mutex<i32>,
//! buffer: Box<[u8; 1_000_000]>,
//! }
//!
//! impl DriverData {
//! fn new() -> impl PinInit<Self, AllocOrInitError<Infallible>> {
//! pin_init!(Self {
//! status: Mutex::new(0),
//! buffer: Box::init(pinned_init::zeroed())?,
//! })
//! }
//! }
//! ```
//!
//!
//! [^1]: That is not entirely true, only smart pointers that implement [`InPlaceInit`].
//!
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
//! [structurally pinned fields]: https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
//! [stack]: crate::stack_init
#[cfg(feature = "alloc")]
use alloc::alloc::AllocError;
use core::{marker::PhantomData, mem::MaybeUninit, pin::Pin, ptr};
#[cfg(feature = "std")]
use std::alloc::AllocError;
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::{boxed::Box, rc::Rc, sync::Arc};
#[cfg(all(not(feature = "alloc"), feature = "std"))]
use std::{boxed::Box, rc::Rc, sync::Arc};
use core::convert::Infallible;
#[doc(hidden)]
pub mod __private;
mod pin_project;
/// Initialize a type directly on the stack.
///
/// # Examples
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # mod mutex {
/// # include!("../examples/mutex.rs");
/// # };
/// # use mutex::*;
/// # use pinned_init::*;
/// # use core::{convert::Infallible,pin::Pin};
/// #[pin_project]
/// struct Foo {
/// #[pin]
/// a: Mutex<usize>,
/// b: Bar,
/// }
///
/// #[pin_project]
/// struct Bar {
/// x: u32,
/// }
///
/// let a = Mutex::new(40);
///
/// stack_init!(let foo = pin_init!(Foo {
/// a,
/// b: Bar {
/// x: 64,
/// },
/// }));
/// let foo: Result<Pin<&mut Foo>, Infallible> = foo;
/// ```
#[macro_export]
macro_rules! stack_init {
(let $var:ident $(: $t:ty)? = $val:expr) => {
let mut $var = $crate::__private::StackInit$(::<$t>)?::uninit();
let val = $val;
let mut $var = unsafe { $crate::__private::StackInit::init(&mut $var, val) };
};
}
/// Construct an in-place initializer for structs.
///
/// The syntax is identical to a normal struct initializer:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// #[pin_project]
/// struct Foo {
/// a: usize,
/// b: Bar,
/// }
///
/// #[pin_project]
/// struct Bar {
/// x: u32,
/// }
///
/// # fn demo() -> impl PinInit<Foo> {
/// let a = 42;
///
/// let initializer = pin_init!(Foo {
/// a,
/// b: Bar {
/// x: 64,
/// },
/// });
/// # initializer }
/// # Box::pin_init(demo()).unwrap();
/// ```
/// Arbitrary rust expressions can be used to set the value of a variable.
///
/// # Init-functions
///
/// When working with this library it is often desired to let others construct your types without
/// giving access to all fields. This is where you would normally write a plain function `new`
/// that would return a new instance of your type. With this library that is also possible, however
/// there are a few extra things to keep in mind.
///
/// To create an initializer function, simple declare it like this:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # #[pin_project]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_project]
/// # struct Bar {
/// # x: u32,
/// # }
///
/// impl Foo {
/// fn new() -> impl PinInit<Self> {
/// pin_init!(Self {
/// a: 42,
/// b: Bar {
/// x: 64,
/// },
/// })
/// }
/// }
/// ```
///
/// Users of `Foo` can now create it like this:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # #[pin_project]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_project]
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl PinInit<Self> {
/// # pin_init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// let foo = Box::pin_init(Foo::new());
/// ```
///
/// They can also easily embed it into their own `struct`s:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # #[pin_project]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_project]
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl PinInit<Self> {
/// # pin_init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// #[pin_project]
/// struct FooContainer {
/// #[pin]
/// foo1: Foo,
/// #[pin]
/// foo2: Foo,
/// other: u32,
/// }
///
/// impl FooContainer {
/// fn new(other: u32) -> impl PinInit<Self> {
/// pin_init!(Self {
/// foo1: Foo::new(),
/// foo2: Foo::new(),
/// other,
/// })
/// }
/// }
/// ```
#[macro_export]
macro_rules! pin_init {
($(&$this:ident in)? $t:ident $(<$($generics:ty),* $(,)?>)? {
$($field:ident $(: $val:expr)?),*
$(,)?
}) => {
$crate::pin_init!(@this($($this)?), @type_name($t $(<$($generics),*>)?), @typ($t $(<$($generics),*>)?), @fields($($field $(: $val)?),*))
};
(@this($($this:ident)?), @type_name($t:ident $(<$($generics:ty),*>)?), @typ($ty:ty), @fields($($field:ident $(: $val:expr)?),*)) => {{
// we do not want to allow arbitrary returns
struct __InitOk;
let init = move |slot: *mut $ty| -> ::core::result::Result<__InitOk, _> {
{
// shadow the structure so it cannot be used to return early
struct __InitOk;
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
$(
$(let $field = $val;)?
// call the initializer
// SAFETY: slot is valid, because we are inside of an initializer closure, we return
// when an error/panic occurs.
unsafe {
<$ty as $crate::__private::__PinData>::__PinData::$field(
::core::ptr::addr_of_mut!((*slot).$field),
$field,
)?;
}
// create the drop guard
// SAFETY: we forget the guard later when initialization has succeeded.
let $field = unsafe { $crate::__private::DropGuard::new(::core::ptr::addr_of_mut!((*slot).$field)) };
// only give access to &DropGuard, so it cannot be accidentally forgotten
let $field = &$field;
)*
#[allow(unreachable_code, clippy::diverging_sub_expression)]
if false {
let _: $t $(<$($generics),*>)? = $t {
$($field: ::core::todo!()),*
};
}
$(
// forget each guard
unsafe { $crate::__private::DropGuard::forget($field) };
)*
}
Ok(__InitOk)
};
let init = move |slot: *mut $ty| -> ::core::result::Result<(), _> {
init(slot).map(|__InitOk| ())
};
let init = unsafe { $crate::pin_init_from_closure::<$t $(<$($generics),*>)?, _>(init) };
init
}}
}
/// Construct an in-place initializer for structs.
///
/// The syntax is identical to a normal struct initializer:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// struct Foo {
/// a: usize,
/// b: Bar,
/// }
///
/// struct Bar {
/// x: u32,
/// }
///
/// # fn demo() -> impl Init<Foo> {
/// let a = 42;
///
/// let initializer = init!(Foo {
/// a,
/// b: Bar {
/// x: 64,
/// },
/// });
/// # initializer }
/// # Box::init(demo()).unwrap();
/// ```
///
/// Arbitrary rust expressions can be used to set the value of a variable.
///
/// # Init-functions
///
/// When working with this library it is often desired to let others construct your types without
/// giving access to all fields. This is where you would normally write a plain function `new`
/// that would return a new instance of your type. With this library that is also possible, however
/// there are a few extra things to keep in mind.
///
/// To create an initializer function, simple declare it like this:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # struct Bar {
/// # x: u32,
/// # }
///
/// impl Foo {
/// fn new() -> impl Init<Self> {
/// init!(Self {
/// a: 42,
/// b: Bar {
/// x: 64,
/// },
/// })
/// }
/// }
/// ```
///
/// Users of `Foo` can now create it like this:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl Init<Self> {
/// # init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// let foo = Box::init(Foo::new());
/// ```
///
/// They can also easily embed it into their own `struct`s:
///
/// ```rust
/// # #![allow(clippy::blacklisted_name, clippy::new_ret_no_self)]
/// # use pinned_init::*;
/// # use core::pin::Pin;
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl Init<Self> {
/// # init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// struct FooContainer {
/// foo1: Foo,
/// foo2: Foo,
/// other: u32,
/// }
///
/// impl FooContainer {
/// fn new(other: u32) -> impl Init<Self> {
/// init!(Self {
/// foo1: Foo::new(),
/// foo2: Foo::new(),
/// other,
/// })
/// }
/// }
/// ```
#[macro_export]
macro_rules! init {
($t:ident $(<$($generics:ty),* $(,)?>)? {
$($field:ident $(: $val:expr)?),*
$(,)?
}) => {{
// we do not want to allow arbitrary returns
struct __InitOk;
let init = move |slot: *mut $t $(<$($generics),*>)?| -> ::core::result::Result<__InitOk, _> {
{
// shadow the structure so it cannot be used to return early
struct __InitOk;
$(
$(let $field = $val;)?
// call the initializer
// SAFETY: slot is valid, because we are inside of an initializer closure, we return
// when an error/panic occurs.
unsafe { $crate::__private::__InitImpl::__init($field, ::core::ptr::addr_of_mut!((*slot).$field))? };
// create the drop guard
// SAFETY: we forget the guard later when initialization has succeeded.
let $field = unsafe { $crate::__private::DropGuard::new(::core::ptr::addr_of_mut!((*slot).$field)) };
// only give access to &DropGuard, so it cannot be accidentally forgotten
let $field = &$field;
)*
#[allow(unreachable_code, clippy::diverging_sub_expression)]
if false {
let _: $t $(<$($generics),*>)? = $t {
$($field: ::core::todo!()),*
};
}
$(
// forget each guard
unsafe { $crate::__private::DropGuard::forget($field) };
)*
}
Ok(__InitOk)
};
let init = move |slot: *mut $t $(<$($generics),*>)?| -> ::core::result::Result<(), _> {
init(slot).map(|__InitOk| ())
};
let init = unsafe { $crate::init_from_closure::<$t $(<$($generics),*>)?, _>(init) };
init
}}
}
pub use pinned_init_macro::{pin_project, pinned_drop};
/// A pinned initializer for `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], or even the stack (see [`stack_init!`]). Use the
/// `pin_init` function of a smart pointer like [`Arc::pin_init`] on this.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this type you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`from_value`] and
/// [`pin_init_from_closure`] where possible.
///
/// The [`PinInit::__pinned_init`] function
/// - returns `Ok(())` iff it initialized every field of slot,
/// - returns `Err(err)` iff it encountered an error and then cleaned slot, this means:
/// - slot can be deallocated without UB ocurring,
/// - slot does not need to be dropped,
/// - slot is not partially initialized.
///
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait PinInit<T, E = Infallible>: Sized {
/// Initializes `slot`.
///
/// # Safety
///
/// `slot` is a valid pointer to uninitialized memory.
/// The caller does not touch `slot` when `Err` is returned, they are only permitted to
/// deallocate.
/// The slot will not move, i.e. it will be pinned.
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
}
/// An initializer for `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], or even the stack (see [`stack_init!`]). Use the
/// `init` function of a smart pointer like [`Box::init`] on this. Because [`PinInit<T, E>`] is a
/// super trait, you can use every function that takes it as well.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this type you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`from_value`] and
/// [`init_from_closure`] where possible.
///
/// The [`Init::__init`] function
/// - returns `Ok(())` iff it initialized every field of slot,
/// - returns `Err(err)` iff it encountered an error and then cleaned slot, this means:
/// - slot can be deallocated without UB ocurring,
/// - slot does not need to be dropped,
/// - slot is not partially initialized.
///
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to exectute the exact same
/// code as `__init`.
///
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
/// move the pointee after initialization.
///
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait Init<T, E = Infallible>: PinInit<T, E> {
/// Initializes `slot`.
///
/// # Safety
///
/// `slot` is a valid pointer to uninitialized memory.
/// The caller does not touch `slot` when `Err` is returned, they are only permitted to
/// deallocate.
unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
}
type Invariant<T> = PhantomData<fn(T) -> T>;
struct InitClosure<F, T, E>(F, Invariant<(T, E)>);
unsafe impl<T, F, E> PinInit<T, E> for InitClosure<F, T, E>
where
F: FnOnce(*mut T) -> Result<(), E>,
{
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
(self.0)(slot)
}
}
unsafe impl<T, F, E> Init<T, E> for InitClosure<F, T, E>
where
F: FnOnce(*mut T) -> Result<(), E>,
{
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
(self.0)(slot)
}
}
/// Creates a new [`Init<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure
/// - returns `Ok(())` iff it initialized every field of slot,
/// - returns `Err(err)` iff it encountered an error and then cleaned slot, this means:
/// - slot can be deallocated without UB ocurring,
/// - slot does not need to be dropped,
/// - slot is not partially initialized.
/// - slot may move after initialization
pub const unsafe fn init_from_closure<T, E>(
f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl Init<T, E> {
InitClosure(f, PhantomData)
}
/// Creates a new [`PinInit<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure
/// - returns `Ok(())` iff it initialized every field of slot,
/// - returns `Err(err)` iff it encountered an error and then cleaned slot, this means:
/// - slot can be deallocated without UB ocurring,
/// - slot does not need to be dropped,
/// - slot is not partially initialized.
/// - may assume that the slot does not move if `T: !Unpin`
pub const unsafe fn pin_init_from_closure<T, E>(
f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl PinInit<T, E> {
InitClosure(f, PhantomData)
}
/// Trait facilitating pinned destruction.
///
/// Use [`pinned_drop`] to implement this trait safely:
/// ```rust
/// # mod mutex {
/// # include!("../examples/mutex.rs");
/// # };
/// # use mutex::*;
/// use core::pin::Pin;
/// use pinned_init::*;
/// #[pin_project(PinnedDrop)]
/// struct Foo {
/// #[pin]
/// mtx: Mutex<usize>,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for Foo {
/// fn drop(self: Pin<&mut Self>) {
/// println!("Foo is being dropped!");
/// }
/// }
/// ```
///
/// # Safety
///
/// This trait must be implemented with [`pinned_drop`].
pub unsafe trait PinnedDrop {
/// Executes the pinned destructor of this type.
///
/// # Safety
///
/// Only call this from `<Self as Drop>::drop`.
unsafe fn drop(self: Pin<&mut Self>);
// used by `pinned_drop` to ensure that only safe operations are used in `drop`.
#[doc(hidden)]
fn __ensure_no_unsafe_op_in_drop(self: Pin<&mut Self>);
}
/// Allocation error, or initialization error.
#[derive(Debug)]
pub enum AllocOrInitError<E> {
/// Allocation failed.
AllocError,
/// Intialization failed.
Init(E),
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<E> From<AllocError> for AllocOrInitError<E> {
fn from(_: AllocError) -> Self {
Self::AllocError
}
}
impl<E> From<Infallible> for AllocOrInitError<E> {
fn from(e: Infallible) -> Self {
match e {}
}
}
/// Smart pointer that can initialize memory in-place.
pub trait InPlaceInit<T>: Sized {
/// The error that might occur when creating `Self`.
type Error<E>;
/// Use the given initializer to in-place initialize a `T`.
///
/// If `T: !Unpin` it will not be able to move afterwards.
fn pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, Self::Error<E>>;
/// Use the given initializer to in-place initialize a `T`.
fn init<E>(init: impl Init<T, E>) -> Result<Self, Self::Error<E>>;
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<T> InPlaceInit<T> for Box<T> {
type Error<E> = AllocOrInitError<E>;
fn pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, Self::Error<E>> {
let mut this = Box::try_new_uninit()?;
let slot = this.as_mut_ptr();
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid and will not be moved because of the `Pin::new_unchecked`
unsafe { init.__pinned_init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { Pin::new_unchecked(this.assume_init()) })
}
fn init<E>(init: impl Init<T, E>) -> Result<Self, Self::Error<E>> {
let mut this = Box::try_new_uninit()?;
let slot = this.as_mut_ptr();
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid
unsafe { init.__init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { this.assume_init() })
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<T> InPlaceInit<T> for Arc<T> {
type Error<E> = AllocOrInitError<E>;
fn pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, Self::Error<E>> {
let mut this = Arc::try_new_uninit()?;
// SAFETY: `this` has refcount = 1
let slot = unsafe { Arc::get_mut_unchecked(&mut this).as_mut_ptr() };
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid and will not be moved because of the `Pin::new_unchecked`
unsafe { init.__pinned_init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { Pin::new_unchecked(this.assume_init()) })
}
fn init<E>(init: impl Init<T, E>) -> Result<Self, Self::Error<E>> {
let mut this = Arc::try_new_uninit()?;
// SAFETY: `this` has refcount = 1
let slot = unsafe { Arc::get_mut_unchecked(&mut this).as_mut_ptr() };
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid
unsafe { init.__init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { this.assume_init() })
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<T> InPlaceInit<T> for Rc<T> {
type Error<E> = AllocOrInitError<E>;
fn pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, Self::Error<E>> {
let mut this = Rc::try_new_uninit()?;
// SAFETY: `this` has refcount = 1
let slot = unsafe { Rc::get_mut_unchecked(&mut this).as_mut_ptr() };
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid and will not be moved because of the `Pin::new_unchecked`
unsafe { init.__pinned_init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { Pin::new_unchecked(this.assume_init()) })
}
fn init<E>(init: impl Init<T, E>) -> Result<Self, Self::Error<E>> {
let mut this = Rc::try_new_uninit()?;
// SAFETY: `this` has refcount = 1
let slot = unsafe { Rc::get_mut_unchecked(&mut this).as_mut_ptr() };
// SAFETY: when init errors/panics, slot will get deallocated but not dropped,
// slot is valid
unsafe { init.__init(slot).map_err(AllocOrInitError::Init)? };
// SAFETY: all fields have been initialized
Ok(unsafe { this.assume_init() })
}
}
/// Marker trait for types that can be initialized by writing just zeroes.
///
/// # Safety
///
/// The bit pattern consisting of only zeroes must be a valid bit pattern for the type.
pub unsafe trait Zeroable {}
/// Create a new zeroed T.
///
/// The returned initializer will write `0x00` to every byte of the given slot.
pub fn zeroed<T: Zeroable + Unpin>() -> impl Init<T> {
// SAFETY: because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
// and because we write all zeroes, the memory is initialized.
unsafe {
init_from_closure(|slot: *mut T| {
slot.write_bytes(0, 1);
Ok(())
})
}
}
/// An initializer that leaves the memory uninitialized.
///
/// The initializer is a no-op. The slot memory is not changed.
pub fn uninit<T>() -> impl Init<MaybeUninit<T>> {
// SAFETY: The memory is allowed to be uninitialized.
unsafe { init_from_closure(|_| Ok(())) }
}
/// Convert a value into an initializer.
///
/// Directly moves the value into the given slot.
pub fn from_value<T>(value: T) -> impl Init<T> {
// SAFETY: we use the value to initialize the slot.
unsafe {
init_from_closure(move |slot: *mut T| {
slot.write(value);
Ok(())
})
}
}
macro_rules! impl_zeroable {
($($t:ty),*) => {
$(unsafe impl Zeroable for $t {})*
};
}
// All primitives that are allowed to be zero.
impl_zeroable!(
bool, char, u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, f32, f64
);
// There is nothing to zero.
impl_zeroable!(core::marker::PhantomPinned, Infallible, ());
// We are allowed to zero padding bytes.
unsafe impl<const N: usize, T: Zeroable> Zeroable for [T; N] {}
// There is nothing to zero.
unsafe impl<T: ?Sized> Zeroable for PhantomData<T> {}
// `null` pointer is valid.
unsafe impl<T: ?Sized> Zeroable for *mut T {}
unsafe impl<T: ?Sized> Zeroable for *const T {}
macro_rules! impl_tuple_zeroable {
($(,)?) => {};
($first:ident, $($t:ident),* $(,)?) => {
// all elements are zeroable and padding can be zero
unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
impl_tuple_zeroable!($($t),* ,);
}
}
impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);