piecrust/call_tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// Copyright (c) DUSK NETWORK. All rights reserved.
use std::marker::PhantomData;
use std::mem;
use piecrust_uplink::ContractId;
/// An element of the call tree.
#[derive(Debug, Clone, Copy)]
pub struct CallTreeElem {
pub contract_id: ContractId,
pub limit: u64,
pub spent: u64,
pub mem_len: usize,
}
/// The tree of contract calls.
#[derive(Debug, Default)]
pub struct CallTree(Option<*mut CallTreeNode>);
impl CallTree {
/// Creates a new empty call tree, starting with the given contract.
pub(crate) const fn new() -> Self {
Self(None)
}
/// Push an element to the call tree.
///
/// This pushes a new child to the current node, and advances to it.
pub(crate) fn push(&mut self, elem: CallTreeElem) {
match self.0 {
None => self.0 = Some(CallTreeNode::new(elem)),
Some(inner) => unsafe {
let node = CallTreeNode::with_parent(elem, inner);
(*inner).children.push(node);
self.0 = Some(node)
},
}
}
/// Moves to the parent node and set the gas spent of the current element,
/// returning it.
pub(crate) fn move_up(&mut self, spent: u64) -> Option<CallTreeElem> {
self.0.map(|inner| unsafe {
(*inner).elem.spent = spent;
let elem = (*inner).elem;
let parent = (*inner).parent;
if parent.is_none() {
free_tree(inner);
}
self.0 = parent;
elem
})
}
/// Moves to the parent node, clearing the tree under it, and returns the
/// current element.
pub(crate) fn move_up_prune(&mut self) -> Option<CallTreeElem> {
self.0.map(|inner| unsafe {
let elem = (*inner).elem;
let parent = (*inner).parent;
if let Some(parent) = parent {
(*parent).children.pop();
}
free_tree(inner);
self.0 = parent;
elem
})
}
/// Give the current node the amount spent and recursively update amount
/// spent to accurately reflect what each node spent during each call.
pub(crate) fn update_spent(&mut self, spent: u64) {
if let Some(inner) = self.0 {
unsafe {
(*inner).elem.spent = spent;
update_spent(inner);
}
}
}
/// Returns the `n`th parent element counting from the current node. The
/// zeroth parent element is the current node.
pub(crate) fn nth_parent(&self, n: usize) -> Option<CallTreeElem> {
let mut current = self.0;
let mut i = 0;
while i < n {
current = current.and_then(|inner| unsafe { (*inner).parent });
i += 1;
}
current.map(|inner| unsafe { (*inner).elem })
}
/// Returns all call ids.
pub(crate) fn call_ids(&self) -> Vec<&ContractId> {
let mut v = Vec::new();
let mut current = self.0;
while current.is_some() {
let p = *current.as_ref().unwrap();
v.push(unsafe { &(*p).elem.contract_id });
current = current.and_then(|inner| unsafe { (*inner).parent });
}
v
}
/// Clears the call tree of all elements.
pub(crate) fn clear(&mut self) {
unsafe {
if let Some(inner) = self.0 {
let mut root = inner;
while let Some(parent) = (*root).parent {
root = parent;
}
self.0 = None;
free_tree(root);
}
}
}
/// Returns an iterator over the call tree, starting from the rightmost
/// leaf, and proceeding to the top of the current position of the tree.
pub fn iter(&self) -> impl Iterator<Item = &CallTreeElem> {
CallTreeIter {
tree: self.0.map(|root| unsafe {
let mut node = root;
while !(*node).children.is_empty() {
let last_index = (*node).children.len() - 1;
node = (*node).children[last_index];
}
Subtree { root, node }
}),
_marker: PhantomData,
}
}
}
struct Subtree {
root: *mut CallTreeNode,
node: *mut CallTreeNode,
}
impl Drop for CallTree {
fn drop(&mut self) {
self.clear()
}
}
unsafe fn update_spent(node: *mut CallTreeNode) {
let node = &mut *node;
node.children.iter_mut().for_each(|&mut child| unsafe {
// It should be impossible for this to underflow since the amount spent
// in all child nodes is always less than or equal to the amount spent
// in the parent node.
node.elem.spent -= (*child).elem.spent;
update_spent(child);
});
}
unsafe fn free_tree(root: *mut CallTreeNode) {
let mut node = Box::from_raw(root);
let mut children = Vec::new();
mem::swap(&mut node.children, &mut children);
for child in children {
free_tree(child);
}
}
struct CallTreeNode {
elem: CallTreeElem,
children: Vec<*mut Self>,
parent: Option<*mut Self>,
}
impl CallTreeNode {
fn new(elem: CallTreeElem) -> *mut Self {
Box::leak(Box::new(Self {
elem,
children: Vec::new(),
parent: None,
}))
}
fn with_parent(elem: CallTreeElem, parent: *mut Self) -> *mut Self {
Box::leak(Box::new(Self {
elem,
children: Vec::new(),
parent: Some(parent),
}))
}
}
/// An iterator over a [`CallTree`].
///
/// It starts at the rightmost node and proceeds leftward towards its siblings,
/// up toward the root.
struct CallTreeIter<'a> {
tree: Option<Subtree>,
_marker: PhantomData<&'a ()>,
}
impl<'a> Iterator for CallTreeIter<'a> {
type Item = &'a CallTreeElem;
fn next(&mut self) -> Option<Self::Item> {
// SAFETY: This is safe since we guarantee that the tree exists between
// the root and the current node. This is done by ensuring the iterator
// can only exist during the lifetime of the tree.
unsafe {
let tree = self.tree.as_mut()?;
let node = tree.node;
let elem = &(*node).elem;
if node == tree.root {
self.tree = None;
return Some(elem);
}
let parent = (*node).parent.expect(
"There should always be a parent in a subtree before the root",
);
tree.node = {
let node_index = (*parent)
.children
.iter()
.position(|&n| n == node)
.expect("The child must be the its parent's child");
if node_index == 0 {
parent
} else {
let sibling_index = node_index - 1;
let mut next_node = (*parent).children[sibling_index];
while !(*next_node).children.is_empty() {
let last_index = (*next_node).children.len() - 1;
next_node = (*next_node).children[last_index];
}
next_node
}
};
Some(elem)
}
}
}