1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
//! A tiny `no_std` PID controller library.
//!
//! This crate implements the classic windowed PID loop over abstract data type.
//!
//! # Introduction
//!
//! A proportional-integral-derivative controller is a control loop mechanism
//! employing feedback that is widely used in industrial control systems
//! and a variety of other applications requiring continuously modulated control.
//!
//! # Examples
//!
//! ```no_run
//! use pid_loop::PID;
//!
//! let target = 42.0;
//! let mut controller = PID::<f32, 1>::new(2.0, 0.7, 0.3, 0.0, 0.0);
//! loop {
//! let correction = controller.next(target, measure());
//! apply_correction(correction);
//! sleep();
//! }
//!
//! fn sleep() { todo!() }
//! fn measure() -> f32 { todo!() }
//! fn apply_correction(_: f32) { todo!() }
//! ```
#![no_std]
#![deny(nonstandard_style, future_incompatible, rust_2018_idioms)]
use core::ops::*;
/// PID controller
///
/// # Examples
///
/// ```no_run
/// use pid_loop::PID;
///
/// let target = 42.0;
/// let mut controller = PID::<f64, 1>::new(2.0, 0.7, 0.3, 0.0, 0.0);
/// let correction = controller.next(target, measure());
///
/// fn measure() -> f64 { todo!() }
/// ```
pub struct PID<F, const W: usize> {
/// Proportional gain.
pub kp: F,
/// Integral gain.
pub ki: F,
/// Derivative gain.
pub kd: F,
/// Feed forward gain
pub kf: F,
/// Velocity
pub kv: F,
last_sp: F,
last_error_idx: usize,
errors: [F; W],
err_history: F,
}
impl<F, const W: usize> PID<F, W>
where
F: Default + Add<Output = F> + Sub<Output = F> + Mul<Output = F> + PartialOrd + Copy,
{
/// Create a new instance of `PID`.
///
/// # Examples
///
/// ```
/// #![allow(unused_assignments)]
/// use pid_loop::PID;
///
/// let mut controller = PID::<f32, 1>::new(0.7, 0.034, 0.084, 0.1, 0.0);
/// ```
pub fn new(
kp: impl Into<F>,
ki: impl Into<F>,
kd: impl Into<F>,
kf: impl Into<F>,
kv: impl Into<F>,
) -> Self {
assert!(W > 0);
Self {
kp: kp.into(),
ki: ki.into(),
kd: kd.into(),
kf: kf.into(),
kv: kv.into(),
last_sp: F::default(),
errors: [F::default(); W],
last_error_idx: usize::default(),
err_history: F::default(),
}
}
/// Reset controller internal state.
///
/// # Examples
///
/// ```
/// #![allow(unused_assignments)]
/// use pid_loop::PID;
///
/// let target = 30.0;
/// let mut controller = PID::<f32, 1>::new(0.7, 0.034, 0.084, 0.1, 0.0);
/// controller.next(target, 42.0);
/// controller.reset();
///
/// ```
pub fn reset(&mut self) {
self.last_sp = F::default();
self.last_error_idx = usize::default();
self.errors = [F::default(); W];
}
/// Push next measurement into the controller and return correction.
///
/// # Examples
///
/// ```
/// #![allow(unused_assignments)]
/// use pid_loop::PID;
///
/// let target = 30.0;
/// let mut controller = PID::<f64, 1>::new(0.7, 0.034, 0.084, 0.1, 0.1);
/// let correction = controller.next(target, 42.0);
/// ```
pub fn next(&mut self, sp: impl Into<F>, fb: impl Into<F>) -> F {
let sp = sp.into();
let fb = fb.into();
let error = sp - fb;
let error_delta = error - self.errors[self.last_error_idx];
self.push_error(error);
let sp_delta = sp - self.last_sp;
self.last_sp = sp;
let p = self.kp * error;
let i = self.ki * self.err_history;
let d = self.kd * error_delta;
let f = self.kf * sp_delta;
let v = self.kv * fb;
p + i + d + f + v
}
fn push_error(&mut self, error: F) {
self.last_error_idx += 1;
if self.last_error_idx >= W {
self.last_error_idx = 0;
}
self.err_history = self.err_history - self.errors[self.last_error_idx];
self.err_history = self.err_history + error;
self.errors[self.last_error_idx] = error;
}
}