1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#![no_std]
extern crate alloc;
use core::ops::Deref;
use alloc::sync::Arc;
use spin::mutex::SpinMutex;
/// A thread-safe PID allocator that can allocate and recycle PIDs efficiently.
/// It encapsulates the allocator's state within an `Arc<SpinMutex<...>>` to allow safe shared access across threads.
#[derive(Debug, Default)]
pub struct PidAllocator<const ORDER: usize> {
inner: Arc<SpinMutex<PidAllocatorInner<ORDER>>>,
}
/// The internal state of the PID allocator, containing the layers of available PIDs.
#[derive(Debug)]
pub struct PidAllocatorInner<const ORDER: usize> {
top_layer: usize,
bottom_layers: [usize; ORDER],
}
impl<const ORDER: usize> PidAllocator<ORDER> {
/// Creates a new instance of the PID allocator.
///
/// This constructor initializes the PID allocator, setting up its internal
/// structure to keep track of allocated and available PIDs. The allocator
/// supports up to `ORDER * usize::BITS` unique PIDs, where `ORDER` is a
/// compile-time constant defining the number of layers in the allocator.
///
/// # Examples
///
/// ```
/// let allocator = PidAllocator::<8>::new();
/// ```
///
/// This creates a PID allocator with 8 layers, capable of managing
/// a total of `8 * usize::BITS` PIDs, which depends on the architecture
/// (e.g., 256 PIDs for a 32-bit architecture or 512 PIDs for a 64-bit architecture).
pub fn new() -> Self {
Self {
inner: Arc::new(SpinMutex::new(PidAllocatorInner::new())),
}
}
/// Attempts to allocate a new PID. Returns `Some(Pid)` if successful, or `None` if all PIDs are currently allocated.
/// The allocated PID is wrapped in a `Pid` object, which will automatically recycle the PID when dropped.
///
/// This method locks the internal state, searches for a free PID, marks it as used,
/// and returns a `Pid` instance representing the allocated PID. If no PIDs are available,
/// it returns `None`.
///
/// # Returns
///
/// * `Some(Pid<ORDER>)` containing the allocated PID if allocation is successful.
/// * `None` if all PIDs are already allocated.
///
/// # Examples
///
/// Successful allocation:
///
/// ```
/// let allocator = PidAllocator::<8>::new();
/// if let Some(pid) = allocator.allocate() {
/// println!("Allocated PID: {}", *pid);
/// }
/// ```
///
/// Handling failure to allocate a PID:
///
/// ```
/// let allocator = PidAllocator::<8>::new();
/// let mut pids = Vec::new();
/// while let Some(pid) = allocator.allocate() {
/// pids.push(pid);
/// }
/// // At this point, no more PIDs can be allocated.
/// assert!(allocator.allocate().is_none());
/// ```
///
/// In this example, PIDs are continuously allocated until no more are available,
/// at which point `allocate()` returns `None`.
pub fn allocate(&self) -> Option<Pid<ORDER>> {
let mut inner = self.inner.lock();
inner.allocate().map(|number| Pid {
number,
allocator: self.inner.clone(),
})
}
/// Checks whether a given PID is currently allocated.
///
/// # Parameters
///
/// * `number`: The PID number to check for allocation.
///
/// # Returns
///
/// * `true` if the PID is currently allocated.
/// * `false` otherwise.
///
/// # Example
///
/// ```
/// let allocator = PidAllocator::<32>::new();
/// let pid = allocator.allocate().expect("Failed to allocate PID");
///
/// assert!(allocator.contains(*pid), "The PID should be marked as allocated.");
/// ```
///
/// # Note
///
/// This method performs a read-only operation on the allocator's state and is thread-safe,
/// thanks to the internal use of `Arc<SpinMutex<...>>`. However, because the state of the allocator
/// can change in concurrent environments, the returned allocation state might not remain valid
/// immediately after this method is called.
pub fn contains(&self, number: usize) -> bool {
self.inner.lock().contains(number)
}
}
impl<const ORDER: usize> PidAllocatorInner<ORDER> {
fn new() -> Self {
Self {
top_layer: 0,
bottom_layers: [0; ORDER],
}
}
/// Allocates a PID from the internal state. This method should only be called with exclusive access to the state.
pub fn allocate(&mut self) -> Option<usize> {
for (index, &layer) in self.bottom_layers.iter().enumerate() {
if layer != usize::MAX {
let free_bit = (!layer).trailing_zeros() as usize;
self.bottom_layers[index] |= 1 << free_bit;
if self.bottom_layers[index] == usize::MAX {
self.top_layer |= 1 << index;
}
return Some(index * (usize::BITS as usize) + free_bit);
}
}
None
}
/// Recycles the given PID, making it available for allocation again.
pub fn recycle(&mut self, number: usize) {
const BITS_PER_LAYER_SHIFT: usize = usize::BITS.trailing_zeros() as usize;
let layer_index = number >> BITS_PER_LAYER_SHIFT;
let bit_index = number & (usize::BITS - 1) as usize;
self.bottom_layers[layer_index] &= !(1 << bit_index);
self.top_layer &= !(1 << layer_index);
}
/// Checks whether a given PID is currently allocated.
pub fn contains(&self, number: usize) -> bool {
const BITS_PER_LAYER_SHIFT: usize = usize::BITS.trailing_zeros() as usize;
let layer_index = number >> BITS_PER_LAYER_SHIFT;
let bit_index = number & ((1 << BITS_PER_LAYER_SHIFT) - 1);
if layer_index < self.bottom_layers.len() {
(self.bottom_layers[layer_index] & (1 << bit_index)) != 0
} else {
false
}
}
}
impl<const ORDER: usize> Default for PidAllocatorInner<ORDER> {
fn default() -> Self {
Self::new()
}
}
/// A handle to an allocated PID. When dropped, the PID is automatically recycled back into the allocator.
#[derive(Debug)]
pub struct Pid<const ORDER: usize> {
number: usize,
allocator: Arc<SpinMutex<PidAllocatorInner<ORDER>>>,
}
impl<const ORDER: usize> Deref for Pid<ORDER> {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.number
}
}
impl<const ORDER: usize> Drop for Pid<ORDER> {
fn drop(&mut self) {
self.allocator.lock().recycle(self.number);
}
}
#[cfg(test)]
mod tests {
use alloc::vec::Vec;
use super::*;
const ORDER: usize = 32;
#[test]
fn pid_allocate_success() {
let allocator = PidAllocator::<ORDER>::new();
assert!(allocator.allocate().is_some());
}
#[test]
fn pid_allocate_unique() {
let allocator = PidAllocator::<ORDER>::new();
let pid1 = allocator.allocate().expect("Failed to allocate PID 1");
let pid2 = allocator.allocate().expect("Failed to allocate PID 2");
assert_ne!(*pid1, *pid2, "Allocated PIDs should be unique");
}
#[test]
fn pid_recycle_and_reallocate() {
let allocator = PidAllocator::<ORDER>::new();
{
let _pid = allocator.allocate().expect("Failed to allocate PID");
}
let mut pids = Vec::new();
for _ in 0..ORDER * usize::BITS as usize {
if let Some(pid) = allocator.allocate() {
pids.push(*pid);
} else {
panic!("Failed to allocate a new PID after recycling");
}
}
assert_eq!(
pids.len(),
ORDER * usize::BITS as usize,
"Not all PIDs were successfully re-allocated"
);
}
#[test]
fn test_contains_allocated_pid() {
let allocator = PidAllocator::<ORDER>::new();
let pid = allocator.allocate().expect("Failed to allocate PID");
assert!(allocator.contains(*pid), "Allocated PID should be recognized as allocated");
}
#[test]
fn test_recycle_pid() {
let allocator = PidAllocator::<ORDER>::new();
let pid = allocator.allocate().expect("Failed to allocate PID");
let pid_value = *pid;
core::mem::drop(pid); // Drop to trigger recycle
assert!(!allocator.contains(pid_value), "Recycled PID should not be recognized as allocated");
}
#[test]
fn test_contains_unallocated_pid() {
let allocator = PidAllocator::<ORDER>::new();
// 假设每个ORDER位都可以分配usize::BITS个PID,取一个足够大的数字以超过可能分配的PID范围
let unallocated_pid = ORDER * usize::BITS as usize * 2;
assert!(!allocator.contains(unallocated_pid), "Unallocated PID should not be recognized as allocated");
}
}