Module accessctrl

Module accessctrl 

Source
Expand description

Hardware access control registers

Modules§

adc0
Control whether debugger, DMA, core 0 and core 1 can access ADC0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
busctrl
Control whether debugger, DMA, core 0 and core 1 can access BUSCTRL, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
cfgreset
Write 1 to reset all ACCESSCTRL configuration, except for the LOCK and FORCE_CORE_NS registers. This bit is used in the RP2350 bootrom to quickly restore ACCESSCTRL to a known state during the boot path. Note that, like all registers in ACCESSCTRL, this register is not writable when the writer’s corresponding LOCK bit is set, therefore a master which has been locked out of ACCESSCTRL can not use the CFGRESET register to disturb its contents.
clocks
Control whether debugger, DMA, core 0 and core 1 can access CLOCKS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
coresight_periph
Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_PERIPH, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
coresight_trace
Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_TRACE, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
dma
Control whether debugger, DMA, core 0 and core 1 can access DMA, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
force_core_ns
Force core 1’s bus accesses to always be Non-secure, no matter the core’s internal state. Useful for schemes where one core is designated as the Non-secure core, since some peripherals may filter individual registers internally based on security state but not on master ID.
gpio_nsmask0
Control whether GPIO0…31 are accessible to Non-secure code. Writable only by a Secure, Privileged processor or debugger. 0 -> Secure access only 1 -> Secure + Non-secure access
gpio_nsmask1
Control whether GPIO32..47 are accessible to Non-secure code, and whether QSPI and USB bitbang are accessible through the Non-secure SIO. Writable only by a Secure, Privileged processor or debugger.
hstx
Control whether debugger, DMA, core 0 and core 1 can access HSTX, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
i2c0
Control whether debugger, DMA, core 0 and core 1 can access I2C0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
i2c1
Control whether debugger, DMA, core 0 and core 1 can access I2C1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
io_bank0
Control whether debugger, DMA, core 0 and core 1 can access IO_BANK0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
io_bank1
Control whether debugger, DMA, core 0 and core 1 can access IO_BANK1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
lock
Once a LOCK bit is written to 1, ACCESSCTRL silently ignores writes from that master. LOCK is writable only by a Secure, Privileged processor or debugger. LOCK bits are only writable when their value is zero. Once set, they can never be cleared, except by a full reset of ACCESSCTRL Setting the LOCK bit does not affect whether an access raises a bus error. Unprivileged writes, or writes from the DMA, will continue to raise bus errors. All other accesses will continue not to.
otp
Control whether debugger, DMA, core 0 and core 1 can access OTP, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pads_bank0
Control whether debugger, DMA, core 0 and core 1 can access PADS_BANK0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pads_qspi
Control whether debugger, DMA, core 0 and core 1 can access PADS_QSPI, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pio0
Control whether debugger, DMA, core 0 and core 1 can access PIO0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pio1
Control whether debugger, DMA, core 0 and core 1 can access PIO1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pio2
Control whether debugger, DMA, core 0 and core 1 can access PIO2, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pll_sys
Control whether debugger, DMA, core 0 and core 1 can access PLL_SYS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pll_usb
Control whether debugger, DMA, core 0 and core 1 can access PLL_USB, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
powman
Control whether debugger, DMA, core 0 and core 1 can access POWMAN, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
pwm
Control whether debugger, DMA, core 0 and core 1 can access PWM, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
resets
Control whether debugger, DMA, core 0 and core 1 can access RESETS, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
rom
Control whether debugger, DMA, core 0 and core 1 can access ROM, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
rosc
Control whether debugger, DMA, core 0 and core 1 can access ROSC, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
rsm
Control whether debugger, DMA, core 0 and core 1 can access RSM, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sha256
Control whether debugger, DMA, core 0 and core 1 can access SHA256, and at what security/privilege levels they can do so. Defaults to Secure, Privileged access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
spi0
Control whether debugger, DMA, core 0 and core 1 can access SPI0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
spi1
Control whether debugger, DMA, core 0 and core 1 can access SPI1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram0
Control whether debugger, DMA, core 0 and core 1 can access SRAM0, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram1
Control whether debugger, DMA, core 0 and core 1 can access SRAM1, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram2
Control whether debugger, DMA, core 0 and core 1 can access SRAM2, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram3
Control whether debugger, DMA, core 0 and core 1 can access SRAM3, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram4
Control whether debugger, DMA, core 0 and core 1 can access SRAM4, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram5
Control whether debugger, DMA, core 0 and core 1 can access SRAM5, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram6
Control whether debugger, DMA, core 0 and core 1 can access SRAM6, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram7
Control whether debugger, DMA, core 0 and core 1 can access SRAM7, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram8
Control whether debugger, DMA, core 0 and core 1 can access SRAM8, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sram9
Control whether debugger, DMA, core 0 and core 1 can access SRAM9, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
syscfg
Control whether debugger, DMA, core 0 and core 1 can access SYSCFG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
sysinfo
Control whether debugger, DMA, core 0 and core 1 can access SYSINFO, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
tbman
Control whether debugger, DMA, core 0 and core 1 can access TBMAN, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
ticks
Control whether debugger, DMA, core 0 and core 1 can access TICKS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
timer0
Control whether debugger, DMA, core 0 and core 1 can access TIMER0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
timer1
Control whether debugger, DMA, core 0 and core 1 can access TIMER1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
trng
Control whether debugger, DMA, core 0 and core 1 can access TRNG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
uart0
Control whether debugger, DMA, core 0 and core 1 can access UART0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
uart1
Control whether debugger, DMA, core 0 and core 1 can access UART1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
usbctrl
Control whether debugger, DMA, core 0 and core 1 can access USBCTRL, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
watchdog
Control whether debugger, DMA, core 0 and core 1 can access WATCHDOG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
xip_aux
Control whether debugger, DMA, core 0 and core 1 can access XIP_AUX, and at what security/privilege levels they can do so. Defaults to Secure, Privileged access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
xip_ctrl
Control whether debugger, DMA, core 0 and core 1 can access XIP_CTRL, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
xip_main
Control whether debugger, DMA, core 0 and core 1 can access XIP_MAIN, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
xip_qmi
Control whether debugger, DMA, core 0 and core 1 can access XIP_QMI, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
xosc
Control whether debugger, DMA, core 0 and core 1 can access XOSC, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.

Structs§

RegisterBlock
Register block

Type Aliases§

ADC0
ADC0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access ADC0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
BUSCTRL
BUSCTRL (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access BUSCTRL, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
CFGRESET
CFGRESET (rw) register accessor: Write 1 to reset all ACCESSCTRL configuration, except for the LOCK and FORCE_CORE_NS registers. This bit is used in the RP2350 bootrom to quickly restore ACCESSCTRL to a known state during the boot path. Note that, like all registers in ACCESSCTRL, this register is not writable when the writer’s corresponding LOCK bit is set, therefore a master which has been locked out of ACCESSCTRL can not use the CFGRESET register to disturb its contents.
CLOCKS
CLOCKS (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access CLOCKS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
CORESIGHT_PERIPH
CORESIGHT_PERIPH (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_PERIPH, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
CORESIGHT_TRACE
CORESIGHT_TRACE (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_TRACE, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
DMA
DMA (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access DMA, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
FORCE_CORE_NS
FORCE_CORE_NS (rw) register accessor: Force core 1’s bus accesses to always be Non-secure, no matter the core’s internal state. Useful for schemes where one core is designated as the Non-secure core, since some peripherals may filter individual registers internally based on security state but not on master ID.
GPIO_NSMASK0
GPIO_NSMASK0 (rw) register accessor: Control whether GPIO0…31 are accessible to Non-secure code. Writable only by a Secure, Privileged processor or debugger. 0 -> Secure access only 1 -> Secure + Non-secure access
GPIO_NSMASK1
GPIO_NSMASK1 (rw) register accessor: Control whether GPIO32..47 are accessible to Non-secure code, and whether QSPI and USB bitbang are accessible through the Non-secure SIO. Writable only by a Secure, Privileged processor or debugger.
HSTX
HSTX (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access HSTX, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
I2C0
I2C0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access I2C0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
I2C1
I2C1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access I2C1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
IO_BANK0
IO_BANK0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access IO_BANK0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
IO_BANK1
IO_BANK1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access IO_BANK1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
LOCK
LOCK (rw) register accessor: Once a LOCK bit is written to 1, ACCESSCTRL silently ignores writes from that master. LOCK is writable only by a Secure, Privileged processor or debugger. LOCK bits are only writable when their value is zero. Once set, they can never be cleared, except by a full reset of ACCESSCTRL Setting the LOCK bit does not affect whether an access raises a bus error. Unprivileged writes, or writes from the DMA, will continue to raise bus errors. All other accesses will continue not to.
OTP
OTP (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access OTP, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PADS_BANK0
PADS_BANK0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PADS_BANK0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PADS_QSPI
PADS_QSPI (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PADS_QSPI, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PIO0
PIO0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PIO0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PIO1
PIO1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PIO1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PIO2
PIO2 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PIO2, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PLL_SYS
PLL_SYS (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PLL_SYS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PLL_USB
PLL_USB (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PLL_USB, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
POWMAN
POWMAN (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access POWMAN, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
PWM
PWM (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access PWM, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
RESETS
RESETS (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access RESETS, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
ROM
ROM (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access ROM, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
ROSC
ROSC (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access ROSC, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
RSM
RSM (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access RSM, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SHA256
SHA256 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SHA256, and at what security/privilege levels they can do so. Defaults to Secure, Privileged access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SPI0
SPI0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SPI0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SPI1
SPI1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SPI1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM0
SRAM0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM0, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM1
SRAM1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM1, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM2
SRAM2 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM2, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM3
SRAM3 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM3, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM4
SRAM4 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM4, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM5
SRAM5 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM5, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM6
SRAM6 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM6, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM7
SRAM7 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM7, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM8
SRAM8 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM8, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SRAM9
SRAM9 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SRAM9, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SYSCFG
SYSCFG (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SYSCFG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
SYSINFO
SYSINFO (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access SYSINFO, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
TBMAN
TBMAN (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access TBMAN, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
TICKS
TICKS (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access TICKS, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
TIMER0
TIMER0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access TIMER0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
TIMER1
TIMER1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access TIMER1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
TRNG
TRNG (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access TRNG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
UART0
UART0 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access UART0, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
UART1
UART1 (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access UART1, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
USBCTRL
USBCTRL (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access USBCTRL, and at what security/privilege levels they can do so. Defaults to Secure access from any master. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
WATCHDOG
WATCHDOG (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access WATCHDOG, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
XIP_AUX
XIP_AUX (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access XIP_AUX, and at what security/privilege levels they can do so. Defaults to Secure, Privileged access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
XIP_CTRL
XIP_CTRL (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access XIP_CTRL, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
XIP_MAIN
XIP_MAIN (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access XIP_MAIN, and at what security/privilege levels they can do so. Defaults to fully open access. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
XIP_QMI
XIP_QMI (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access XIP_QMI, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.
XOSC
XOSC (rw) register accessor: Control whether debugger, DMA, core 0 and core 1 can access XOSC, and at what security/privilege levels they can do so. Defaults to Secure, Privileged processor or debug access only. This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which becomes Non-secure-Privileged-writable when the NSP bit is set.