1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use std::io::{Error, ErrorKind, Read};

use image::{GenericImageView, Luma};

use super::bintest::ImageBintest;
use super::geometry::ISimilarity2;
use super::node::ComparisonNode;

struct Tree {
    nodes: Vec<ComparisonNode>,
    predictions: Vec<f32>,
    threshold: f32,
}

/// Implements object detection using a cascade of decision tree classifiers.

pub struct Detector {
    depth: usize,
    dsize: usize,
    trees: Vec<Tree>,
}

impl Detector {
    /// Estimate detection score for the region of interest.

    ///

    /// ### Arguments

    ///

    /// * `image` -- target image;

    /// * `roi` -- region of interest:

    ///   - `scaling` -- region size;

    ///   - `translation` -- region center.

    ///

    /// ### Returns

    ///

    /// * `Some(f32)` passed region is an object with score;

    /// * `None` -- if passed region is not an object.

    #[inline]
    pub fn classify<I>(&self, image: &I, roi: ISimilarity2) -> Option<f32>
    where
        I: GenericImageView<Pixel = Luma<u8>>,
    {
        let mut result = 0.0f32;

        for tree in self.trees.iter() {
            let idx = (0..self.depth).fold(1, |idx, _| {
                2 * idx + !tree.nodes[idx].bintest(image, &roi) as usize
            });
            let lutidx = idx - self.dsize;
            result += tree.predictions[lutidx];

            if result < tree.threshold {
                return None;
            }
        }
        Some(result - self.trees.last().unwrap().threshold)
    }

    /// Create a detector object from a readable source.

    pub fn from_readable(mut readable: impl Read) -> Result<Self, Error> {
        let mut buffer: [u8; 4] = [0u8; 4];
        // skip first 8 bytes;

        readable.read_exact(&mut [0; 8])?;

        readable.read_exact(&mut buffer)?;
        let depth = i32::from_le_bytes(buffer) as usize;

        let pred_size: usize = match 2usize.checked_pow(depth as u32) {
            Some(value) => value,
            None => return Err(Error::new(ErrorKind::Other, "depth overflow")),
        };
        // first node appended from code

        let tree_size = pred_size - 1;

        readable.read_exact(&mut buffer)?;
        let ntrees = i32::from_le_bytes(buffer) as usize;

        let mut trees: Vec<Tree> = Vec::with_capacity(ntrees);

        for _ in 0..ntrees {
            let mut nodes = Vec::with_capacity(tree_size);
            let mut predictions = Vec::with_capacity(pred_size);
            nodes.push(ComparisonNode::from([0i8, 0i8, 0i8, 0i8]));

            for _ in 0..tree_size {
                readable.read_exact(&mut buffer)?;
                nodes.push(ComparisonNode::from(buffer));
            }

            for _ in 0..pred_size {
                readable.read_exact(&mut buffer)?;
                predictions.push(f32::from_le_bytes(buffer));
            }

            readable.read_exact(&mut buffer)?;
            let threshold = f32::from_le_bytes(buffer);
            trees.push(Tree {
                nodes,
                predictions,
                threshold,
            });
        }

        Ok(Self {
            depth,
            dsize: pred_size,
            trees,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn check_face_detector_model_parsing() {
        let facefinder =
            Detector::from_readable(include_bytes!("../models/facefinder").to_vec().as_slice())
                .expect("parsing failed");
        assert_eq!(6, facefinder.depth);
        assert_eq!(468, facefinder.trees.len());

        let second_node = ComparisonNode::from([-17i8, 36i8, -55i8, 7i8]);
        let last_node = ComparisonNode::from([-26i8, -84i8, -48i8, 0i8]);
        assert_eq!(second_node, facefinder.trees[0].nodes[1]);
        assert_eq!(
            last_node,
            *facefinder.trees.last().unwrap().nodes.last().unwrap(),
        );

        assert_abs_diff_eq!(facefinder.trees[0].threshold, -0.7550662159919739f32);
        assert_abs_diff_eq!(
            facefinder.trees.last().unwrap().threshold,
            -1.9176125526428223f32
        );

        assert_abs_diff_eq!(facefinder.trees[0].predictions[0], -0.7820115089416504f32);
        assert_abs_diff_eq!(
            *facefinder.trees.last().unwrap().predictions.last().unwrap(),
            0.07058460265398026f32
        );
    }
}