1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
use super::{Point, Vector2};
use num_traits::{Num, Zero};
/// The `Polygon` struct represents a polygon with a generic type `T` and contains an origin point and a
/// vector of 2D vectors.
///
/// Properties:
///
/// * `origin`: The origin property represents the starting point or the reference point of the polygon.
/// It is of type Point<T>, where T is the generic type parameter of the Polygon struct.
/// * `vecs`: vecs is a vector that stores the vectors representing the sides of the polygon. Each
/// vector represents the direction and magnitude of a side of the polygon.
pub struct Polygon<T> {
pub origin: Point<T>,
pub vecs: Vec<Vector2<T>>,
}
impl<T: Clone + Num + Copy> Polygon<T> {
/// The `new` function constructs a new `Polygon` object by calculating the vectors between each
/// coordinate and the origin.
///
/// Arguments:
///
/// * `coords`: An array slice of Point<T> objects, representing the coordinates of the polygon. The
/// first element of the slice is considered the origin of the polygon, and the remaining elements
/// are treated as vectors relative to the origin.
///
/// Returns:
///
/// The `new` function returns a new instance of the `Polygon` object.
///
/// # Examples
///
/// ```
/// use physdes::point::Point;
/// use physdes::polygon::Polygon;
/// use physdes::vector2::Vector2;
///
/// let p1 = Point::new(1, 1);
/// let p2 = Point::new(2, 2);
/// let p3 = Point::new(3, 3);
/// let p4 = Point::new(4, 4);
/// let p5 = Point::new(5, 5);
/// let poly = Polygon::new(&[p1, p2, p3, p4, p5]);
/// assert_eq!(poly.origin, Point::new(1, 1));
/// assert_eq!(poly.vecs.len(), 4);
/// assert_eq!(poly.vecs[0], Vector2::new(1, 1));
/// ```
pub fn new(coords: &[Point<T>]) -> Self {
let origin = coords[0];
let mut vecs = vec![];
for pt in coords.iter().skip(1) {
vecs.push(pt - origin);
}
Polygon { origin, vecs }
}
/// The `signed_area_x2` function calculates the signed area multiplied by 2 of a polygon.
///
/// Returns:
///
/// The function `signed_area_x2` returns the signed area multiplied by 2.
/// Signed area x 2
///
/// # Panics
///
/// Panics if n < 2
///
/// Returns:
///
/// The `new` function returns a new instance of the `Polygon` object.
///
/// # Examples
///
/// ```
/// use physdes::point::Point;
/// use physdes::polygon::Polygon;
/// use physdes::vector2::Vector2;
///
/// let p1 = Point::new(1, 1);
/// let p2 = Point::new(2, 2);
/// let p3 = Point::new(3, 3);
/// let p4 = Point::new(4, 4);
/// let p5 = Point::new(5, 5);
/// let poly = Polygon::new(&[p1, p2, p3, p4, p5]);
/// assert_eq!(poly.signed_area_x2(), 0);
/// ```
pub fn signed_area_x2(&self) -> T {
let vs = &self.vecs;
let n = vs.len();
assert!(n >= 2);
let mut res = vs[0].x_ * vs[1].y_ - vs[n - 1].x_ * vs[n - 2].y_;
for i in 1..n - 1 {
res = res + vs[i].x_ * (vs[i + 1].y_ - vs[i - 1].y_);
}
res
}
/// The function `lb` returns a `Point<T>`.
///
/// Returns:
///
/// a value of type `Point<T>`.
pub fn lb(&self) -> Point<T> {
unimplemented!()
}
/// The function `ub` returns a `Point<T>`.
///
/// Returns:
///
/// a value of type `Point<T>`.
pub fn ub(&self) -> Point<T> {
unimplemented!()
}
}
impl<T: Clone + Num + Ord + Copy> Polygon<T> {
/// The function `create_mono_polygon` takes a set of points and a function, and returns a sorted
/// list of points that form a monotonic polygon.
///
/// Arguments:
///
/// * `pointset`: pointset is a slice of Point<T> objects, representing a set of points in a 2D
/// space.
/// * `f`: The parameter `f` is a closure that takes a reference to a `Point<T>` and returns a tuple
/// `(T, T)`. It is used to determine the ordering of the points in the polygon.
///
/// Returns:
///
/// The function `create_mono_polygon` returns a `Vec<Point<T>>`, which is a vector of points.
/// Create a x-mono Polygon object
pub fn create_mono_polygon<F>(pointset: &[Point<T>], f: F) -> Vec<Point<T>>
where
F: Fn(&&Point<T>) -> (T, T),
{
let max_pt = pointset.iter().max_by_key(&f).unwrap();
let min_pt = pointset.iter().min_by_key(&f).unwrap();
let d = max_pt - min_pt;
let (mut lst1, mut lst2): (Vec<Point<T>>, Vec<Point<T>>) = pointset
.iter()
.partition(|&a| d.cross(&(a - min_pt)) <= Zero::zero());
lst1.sort_by_key(|a| f(&a));
lst2.sort_by_key(|a| f(&a));
lst2.reverse();
lst1.append(&mut lst2);
lst1
}
/// The function `create_xmono_polygon` creates a monotone polygon object using a given point set,
/// with the x-coordinate as the primary sorting criterion.
///
/// Arguments:
///
/// * `pointset`: A slice of Point objects, where each Point object has xcoord and ycoord
/// properties.
///
/// Returns:
///
/// The function `create_xmono_polygon` returns a vector of `Point<T>`.
#[inline]
pub fn create_xmono_polygon(pointset: &[Point<T>]) -> Vec<Point<T>> {
Self::create_mono_polygon(pointset, |a| (a.xcoord, a.ycoord))
}
/// The function creates a y-monotone polygon object using a given point set.
///
/// Arguments:
///
/// * `pointset`: A slice of Point objects, where each Point object has two fields: ycoord and
/// xcoord.
///
/// Returns:
///
/// The function `create_ymono_polygon` returns a vector of `Point<T>` objects.
#[inline]
pub fn create_ymono_polygon(pointset: &[Point<T>]) -> Vec<Point<T>> {
Self::create_mono_polygon(pointset, |a| (a.ycoord, a.xcoord))
}
/// The function `point_in_polygon` determines if a given point is within a polygon.
///
/// The code below is from Wm. Randolph Franklin <wrf@ecse.rpi.edu>
/// (see URL below) with some minor modifications for integer. It returns
/// true for strictly interior points, false for strictly exterior, and ub
/// for points on the boundary. The boundary behavior is complex but
/// determined; in particular, for a partition of a region into polygons,
/// each Point is "in" exactly one Polygon.
/// (See p.243 of [O'Rourke (C)] for a discussion of boundary behavior.)
///
/// See <http://www.faqs.org/faqs/graphics/algorithms-faq/> Subject 2.03
///
/// Arguments:
///
/// * `pointset`: A slice of points representing the vertices of the polygon. Each point has x and y
/// coordinates.
/// * `q`: The parameter `q` represents the point that we want to determine if it is within the
/// polygon or not.
///
/// Returns:
///
/// The function `point_in_polygon` returns a boolean value. It returns `true` if the given point
/// `q` is strictly inside the polygon defined by the `pointset` array, `false` if the point is
/// strictly outside the polygon, and `ub` (undefined behavior) if the point lies on the boundary of
/// the polygon.
pub fn point_in_polygon(pointset: &[Point<T>], q: &Point<T>) -> bool {
let n = pointset.len();
let mut p0 = &pointset[n - 1];
let mut c = false;
for p1 in pointset.iter() {
if (p1.ycoord <= q.ycoord && q.ycoord < p0.ycoord)
|| (p0.ycoord <= q.ycoord && q.ycoord < p1.ycoord)
{
let d = (q - p0).cross(&(p1 - p0));
if p1.ycoord > p0.ycoord {
if d < Zero::zero() {
c = !c;
}
} else {
// v1.ycoord < v0.ycoord
if d > Zero::zero() {
c = !c;
}
}
}
p0 = p1;
}
c
}
}
#[cfg(test)]
mod test {
#![allow(non_upper_case_globals)]
use super::*;
#[test]
fn test_ymono_polygon() {
let coords = vec![
(-2, 2),
(0, -1),
(-5, 1),
(-2, 4),
(0, -4),
(-4, 3),
(-6, -2),
(5, 1),
(2, 2),
(3, -3),
(-3, -3),
(3, 3),
(-3, -4),
(1, 4),
];
let mut pointset = vec![];
for (x, y) in coords.iter() {
pointset.push(Point::<i32>::new(*x, *y));
}
let pointset = Polygon::<i32>::create_ymono_polygon(&pointset);
for p in pointset.iter() {
print!("({}, {}) ", p.xcoord, p.ycoord);
}
let poly = Polygon::<i32>::new(&pointset);
assert_eq!(poly.signed_area_x2(), 102);
}
#[test]
fn test_xmono_polygon() {
let coords = vec![
(-2, 2),
(0, -1),
(-5, 1),
(-2, 4),
(0, -4),
(-4, 3),
(-6, -2),
(5, 1),
(2, 2),
(3, -3),
(-3, -3),
(3, 3),
(-3, -4),
(1, 4),
];
let mut pointset = vec![];
for (x, y) in coords.iter() {
pointset.push(Point::<i32>::new(*x, *y));
}
let pointset = Polygon::<i32>::create_xmono_polygon(&pointset);
for p in pointset.iter() {
print!("({}, {}) ", p.xcoord, p.ycoord);
}
let poly = Polygon::<i32>::new(&pointset);
assert_eq!(poly.signed_area_x2(), 111);
}
}