1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
use std::collections::HashMap;
use std::env;
use std::fs::File;
use std::io::Read;
use std::process::exit;
use serde::{Deserialize, Serialize};
use crate::chunk::CompilerModuleChunk;
use crate::chunk::OpCode::*;
use crate::chunk::{Chunk, ClassChunk, FunctionChunk, FunctionType, Instr, ModuleChunk, OpCode};
use crate::debug::{disassemble_class_chunk, disassemble_fn_chunk};
use crate::native::native_functions::NATIVE_FUNCTIONS;
use crate::precedence::{get_rule, ParseFn, Precedence};
use crate::scanner::{Scanner, Token, TokenType};
use crate::value::Value;
use crate::VERSION;
const DEFAULT_FILE_NAME: &str = "script";
const MAX_MODULES: usize = 255;
const MAX_JUMP: usize = 65535;
#[derive(Debug)]
pub struct Compiler {
/// The modules that are imported (and the main module)
modules: Vec<CompilerModuleChunk>,
/// The name of the module and the index in the modules vector
module_table: HashMap<String, usize>,
/// Which ModuleChunkScanner should the the compiler return to after. Acts as a stack
parent_modules: Vec<usize>,
// we are always in a module, because the code in the main file is in a module (index 0)
current_module: usize,
// normally equal to the current_module, but this says from which module we are currently compiling
current_module_code: usize,
had_error: bool,
panic_mode: bool,
quiet_mode: bool,
debug_mode: bool,
}
impl Compiler {
fn current_chunk(&mut self) -> &mut Chunk {
let index = self.current_module().current_function;
&mut self
.current_module()
.functions
.get_mut(index)
.unwrap()
.chunk
}
fn current_chunk_code(&mut self) -> &mut Chunk {
let index = self.current_code_module().current_function;
&mut self
.current_code_module()
.functions
.get_mut(index)
.unwrap()
.chunk
}
fn current_chunk_ref(&self) -> &Chunk {
&self
.current_module_ref()
.functions
.get(self.current_module_ref().current_function)
.unwrap()
.chunk
}
fn current_fn(&mut self) -> &mut FunctionChunk {
let index = self.current_module_ref().current_function;
self.current_module().functions.get_mut(index).unwrap()
}
fn current_fn_type(&self) -> FunctionType {
self.current_module_ref()
.functions
.get(self.current_module_ref().current_function)
.unwrap()
.fn_type
}
/// Panics if not in a class. Only call this if you're sure you're in a class def!
fn current_class(&mut self) -> &mut ClassChunk {
let index = self.current_module().current_class.unwrap();
self.current_module().classes.get_mut(index).unwrap()
}
pub fn current_module(&mut self) -> &mut CompilerModuleChunk {
self.modules.get_mut(self.current_module).unwrap()
}
pub fn current_code_module(&mut self) -> &mut CompilerModuleChunk {
self.modules.get_mut(self.current_module_code).unwrap()
}
// uses the current_module_code
pub fn set_current_module(&mut self, m: CompilerModuleChunk) {
self.modules[self.current_module_code] = m;
}
fn current_module_ref(&self) -> &CompilerModuleChunk {
self.modules.get(self.current_module).unwrap()
}
fn current_code_module_ref(&self) -> &CompilerModuleChunk {
self.modules.get(self.current_module_code).unwrap()
}
fn advance(&mut self) {
// heck, but idk another way, cause i cant have 2 mutable borrows
let mut m = self.current_code_module().clone();
let mut m2 = self.current_code_module().clone();
m2.tokens.push(m.scanner.scan_token()); // Fixme: Wastes memory by not just dropping the older tokens, make advance() drop older tokens after i finish the code?
self.set_current_module(m);
self.current_code_module().tokens = m2.tokens;
if self.current().token_type == TokenType::Error {
self.error(self.current().lexeme.clone().as_str());
self.advance();
}
}
fn previous(&self) -> &Token {
&self.current_code_module_ref().tokens[self.current_code_module_ref().tokens.len() - 2]
}
fn current(&self) -> &Token {
&self.current_code_module_ref().tokens[self.current_code_module_ref().tokens.len() - 1]
}
fn consume(&mut self, token_type: TokenType, msg: &str) {
self.advance();
if !(self.previous().token_type == token_type) {
self.error(msg);
}
}
fn match_cur(&mut self, token_type: TokenType) -> bool {
if !self.check(token_type) {
false
} else {
self.advance();
true
}
}
fn check(&self, token_type: TokenType) -> bool {
self.current().token_type == token_type
}
fn error(&mut self, message: &str) {
if self.panic_mode {
return;
} // Ignore other errors while in panic_mode
self.had_error = true;
self.panic_mode = true;
if self.quiet_mode {
return;
}
let token = self.previous();
eprint!(
"[{}:{}] Error",
self.current_module_ref().scanner.file.clone(),
token.line_num + 1
);
match token.token_type {
TokenType::EOF => eprint!(" at end of file"),
TokenType::Error => (), // nothing
_ => eprint!(" at '{}'", token.lexeme),
}
eprintln!(": {}", message);
}
fn synchronize(&mut self) {
self.panic_mode = false;
while !self.check(TokenType::EOF) {
if self.previous().token_type == TokenType::Semicolon {
return;
}
match self.current().token_type {
TokenType::Class
| TokenType::Fun
| TokenType::Var
| TokenType::For
| TokenType::If
| TokenType::While
| TokenType::Print
| TokenType::Return => return,
_ => (),
}
self.advance();
}
}
fn emit_instr(&mut self, op_code: OpCode) {
// println!("Emitting instr {:?} from token {:?}", op_code, self.previous()); kinda useful
let instr = Instr {
op_code,
line_num: self.previous().line_num,
};
self.current_chunk_code().write_instruction(instr)
}
fn emit_instrs(&mut self, op_codes: &[OpCode]) {
for oc in op_codes {
self.emit_instr(*oc)
}
}
fn emit_constant(&mut self, value: Value) -> usize {
let index = self.add_constant(value);
self.emit_instr(OpConstant(index));
index
}
fn add_constant(&mut self, value: Value) -> usize {
match self
.current_module()
.constants
.iter()
.position(|x| x == &value)
{
Some(i) => i,
None => {
self.current_module().constants.push(value);
self.current_module().constants.len() - 1
}
}
}
fn emit_return(&mut self) {
if self.current_fn_type() == FunctionType::Initializer {
self.emit_instrs(&[OpGetLocal(0), OpReturn]);
} else {
self.emit_instrs(&[OpNil, OpReturn]);
}
}
/// Emits OpCode::OpJump
///
/// Returns the index of the jump instruction for patching
fn emit_jump(&mut self) -> usize {
self.emit_instr(OpJump(usize::MAX));
self.current_chunk().code.len() - 1
}
/// Emits OpCode::OpJumpIfFalse
///
/// Returns the index of the jump instruction for patching
fn emit_jif(&mut self) -> usize {
self.emit_instr(OpJumpIfFalse(usize::MAX));
self.current_chunk().code.len() - 1
}
/// Given the index of the jump instruction in the chunk, update the opcode to jump to the instruction after the current one
fn patch_jump(&mut self, index: usize) {
let jump_amount = self.current_chunk().code.len() - index;
if jump_amount > MAX_JUMP {
self.error("Too much code to jump over");
}
let jump_instr = self.current_chunk().code.get_mut(index).unwrap();
macro_rules! replace_jump {
($jump_type: path) => {{
jump_instr.op_code = $jump_type(jump_amount)
}};
}
match jump_instr.op_code {
OpJump(_) => replace_jump!(OpCode::OpJump),
OpJumpIfFalse(_) => replace_jump!(OpCode::OpJumpIfFalse),
_ => panic!(
"Compiler panic: Attempted to patch a non_jump op code instruction: {:?}",
jump_instr
),
}
}
/// loop_start: Index of the instruction to jump back to
fn emit_loop(&mut self, loop_start: usize) {
let offset = self.current_chunk().code.len() - loop_start;
let loop_op = OpLoop(offset);
if offset > (u16::MAX as usize) {
self.error("Loop body too large");
}
self.emit_instr(loop_op);
}
/// Emits an OpReturn
fn end_compilation(&mut self) {
self.emit_return();
}
/// End scope by emitting pop instructions and cleaning the resolver
fn end_scope(&mut self) {
for _ in 0..self.current_module().resolver.end_scope() {
self.emit_instr(OpPop); // Remove old local variables
}
}
/// Calls Resolver::declare_variable() with the previous Token's lexeme (TokenIdentifier)
fn declare_variable(&mut self) {
let str_val = self.previous().lexeme.clone();
let success = self.current_module().resolver.declare_variable(str_val);
if !success {
self.error("Variable with this name already declared in this scope");
}
}
fn parse_precedence(&mut self, prec: Precedence) {
self.advance();
// Parse the start of the prefix expression
// We know this must be a prefix because we can't start with something that is an infix (eg + 3 2)
let prefix_rule = (get_rule(self.previous().token_type)).prefix;
// Used only by variable() to determine if a TokenIdentifier is for an assignment or get
let can_assign = prec <= Precedence::Assignment;
self.call_parse_fn(prefix_rule, can_assign);
// Parse any number of infix expressions, as long as they have higher precedence
while prec <= get_rule(self.current().token_type).precedence {
self.advance();
let infix_rule = (get_rule(self.previous().token_type)).infix;
self.call_parse_fn(infix_rule, can_assign);
}
// Show compilation error for a TokenEqual found in an infix position
if can_assign && self.previous().token_type == TokenType::Equal {
self.error("Invalid assignment target");
}
}
fn call_parse_fn(&mut self, parse_fn: ParseFn, can_assign: bool) {
match parse_fn {
ParseFn::None => self.error("Expected expression"),
ParseFn::Binary => self.binary(),
ParseFn::Grouping => self.grouping(),
ParseFn::Unary => self.unary(),
ParseFn::Number => self.number(),
ParseFn::Literal => self.literal(),
ParseFn::String => self.string(),
ParseFn::List => self.list(can_assign),
ParseFn::HashMap => self.hashmap(can_assign),
ParseFn::Variable => self.variable(can_assign),
ParseFn::And => self.and_operator(),
ParseFn::Or => self.or_operator(),
ParseFn::Call => self.call(),
ParseFn::Dot => self.dot(can_assign),
ParseFn::This => self.this(),
ParseFn::Super => self.super_(),
ParseFn::Increment => { /* gets handled by named_variable() */ }
}
}
fn declaration(&mut self) {
if self.match_cur(TokenType::Fun) {
self.fun_declaration();
} else if self.match_cur(TokenType::Class) {
self.class_declaration();
} else if self.match_cur(TokenType::Var) {
self.var_declaration();
} else {
self.statement();
}
if self.panic_mode {
self.synchronize();
}
}
fn fun_declaration(&mut self) {
let global = self.parse_variable("Expected function name");
self.current_module().resolver.mark_initialized(); // Initialize the function object if we are in a local scope
self.function(FunctionType::Function);
self.define_variable(global); // Emit the define instr if we are in the global scope
}
fn class_declaration(&mut self) {
self.consume(
TokenType::Identifier,
"Expected class name after keyword 'class'",
);
let name = self.previous().lexeme.clone();
let name_index = self.identifier_constant(&name);
self.declare_variable();
let class = ClassChunk::new(name);
let old_class = self.current_module().current_class;
self.current_module().classes.push(class);
let class_index = self.current_module().classes.len() - 1;
self.current_module().current_class = Some(class_index);
self.emit_instr(OpClass(class_index));
self.define_variable(name_index);
// Check for superclass
if self.match_cur(TokenType::Less) {
self.consume(TokenType::Identifier, "Expected superclass name");
// Resolve the superclass methods entirely at compile time instead of runtime because it fits how everything else works
// However because the compiler is single pass, you can only inherit a class that has already been defined
// Note: we know that all the methods the superclass will ever own must already be defined, since it will have had the same superclass resolution at compile time < Phoenix classes are closed
// Note: I like this bit of code, it is a really nice shiny implementation of superclasses that doesnt require any new opcodes and does not require any copying of the FunctionChunks. Fucking sick
let superclass_name = &self.previous().lexeme.clone();
let mut superclass_index: Option<usize> = None;
for (i, class_def) in self.current_module().classes.iter().enumerate() {
if class_def.name.eq(superclass_name) {
superclass_index = Some(i);
}
}
if superclass_index == self.current_module().current_class {
self.error("A class cannot inherit from itself");
}
match superclass_index {
Some(i) => {
let superclass = &self.current_module().classes[i];
for (name_index, fn_index) in superclass.methods.clone().iter() {
self.current_class().methods.insert(*name_index, *fn_index);
// Inherit all the methods by just copying in all the fn_indices, nicely handles multiple levels of inheritance
let name = self.current_module().identifier_constants[*name_index].clone();
if name.as_str().eq("init") {
self.current_class().has_init = true;
}
}
self.current_class().superclass = superclass_index;
}
None => {
self.error(format!("'{}' is not a valid superclass", superclass_name).as_str())
}
}
}
self.consume(TokenType::LeftBrace, "Expected '{' before class body");
while !self.check(TokenType::RightBrace) && !self.check(TokenType::EOF) {
self.method();
}
self.consume(TokenType::RightBrace, "Expected '}' after class body");
self.current_module().current_class = old_class;
}
// Note: Since this constantly confuses me, I'm gonna keep a note here so that I don't forget how variables work in Phoenix
// Globals: The opcodes GetGlobal and SetGlobal take a PhoenixString from the constants vec and map it into a HashMap in the VM, no resolving/checking is done before runtime
// Locals: Local variables live on the stack and since they are the ONLY values that do not get popped after statements, we know that they must live at the very bottom of the stack,
// and thus we can just raw index from the bottom of the stack to the index of the variable by looking at how many locals have been defined in this scope
fn var_declaration(&mut self) {
let global = self.parse_variable("Expected variable name");
if self.match_cur(TokenType::Equal) {
self.expression();
} else {
self.emit_instr(OpNil);
}
self.consume(
TokenType::Semicolon,
"Expected ';' after variable declaration",
);
self.define_variable(global);
}
/// Match the identifier token and pass it into identifier_constant to be added to the chunk if current scope is global
///
/// Calls declare_variable() if the current scope is local
fn parse_variable(&mut self, error_msg: &str) -> usize {
self.consume(TokenType::Identifier, error_msg);
// check if the variable has the same name as a native function
if NATIVE_FUNCTIONS
.lock()
.unwrap()
.contains_key(&*self.previous().lexeme)
{
self.error("Cannot redefine a native function");
}
self.declare_variable();
if self.current_module().resolver.is_global() {
let str_val = self.previous().lexeme.clone();
self.identifier_constant(&str_val)
} else {
0
}
}
/// Add a string to the chunk as a constant and return the index
///
/// Only used for global variables
fn identifier_constant(&mut self, str_val: &String) -> usize {
// self.add_constant(Value::PhoenixString(str_val.to_string()))
match self
.current_module()
.identifier_constants
.iter()
.position(|x| x == str_val)
{
Some(i) => i,
None => {
self.current_module()
.identifier_constants
.push(str_val.to_string());
self.current_module().identifier_constants.len() - 1
}
}
}
/// Add a string to the chunk as a constant and return the index
///
/// Only used for global variables
pub fn identifier_constant_module(&mut self, str_val: &String, module: usize) -> usize {
// self.add_constant(Value::PhoenixString(str_val.to_string()))
match self
.modules
.get_mut(module)
.unwrap()
.identifier_constants
.iter()
.position(|x| x == str_val)
{
Some(i) => i,
None => {
self.modules
.get_mut(module)
.unwrap()
.identifier_constants
.push(str_val.to_string());
self.modules
.get_mut(module)
.unwrap()
.identifier_constants
.len()
- 1
}
}
}
/// Emits the instruction to define the global variable
/// or to set the local variable as initialized
fn define_variable(&mut self, global: usize) {
if self.current_module().resolver.is_global() {
self.emit_instr(OpDefineGlobal(global));
} else {
self.current_module().resolver.mark_initialized();
}
}
fn statement(&mut self) {
if self.match_cur(TokenType::Print) {
self.print_statement();
} else if self.match_cur(TokenType::Import) {
self.import_statement();
} else if self.match_cur(TokenType::Return) {
self.return_statement();
} else if self.match_cur(TokenType::If) {
self.if_statement();
} else if self.match_cur(TokenType::While) {
self.while_statement();
} else if self.match_cur(TokenType::For) {
self.for_statement();
} else if self.match_cur(TokenType::LeftBrace) {
self.current_module().resolver.begin_scope();
self.block();
self.end_scope();
} else {
self.expression_statement();
}
}
fn print_statement(&mut self) {
self.expression();
self.consume(
TokenType::Semicolon,
"Expected ';' after value in print statement",
);
self.emit_instr(OpPrint);
}
fn import_statement(&mut self) {
// first we need to check if we are in a script function and else we error, because we can't import in a non-script function (for now)
if self.current_fn_type() != FunctionType::Script {
self.error("Can't import in a function");
}
// so we have something like "import foo" or "import bar from foo"
// for now we only support the first one
self.consume(TokenType::Identifier, "Expected identifier after import");
let name = self.previous().lexeme.clone();
self.consume(TokenType::Semicolon, "Expected ';' after import statement");
// now we have the name of the module we want to import
// first we try to open the file by doing current_dir + name + .phx
let mut path = env::current_dir().unwrap();
path.push(name.clone());
path.set_extension("phx");
// debug the path
if self.debug_mode {
println!("Importing module: {}", path.clone().to_str().unwrap());
}
let mut file = match File::open(path.clone()) {
Ok(f) => f,
Err(e) => {
self.error(format!("Could not open file: {}", e).as_str());
return;
}
};
// now we have the contents of the file in contents
let mut contents = String::new();
match file.read_to_string(&mut contents) {
Ok(_) => {}
Err(e) => {
self.error(format!("Could not read file: {}", e).as_str());
return;
}
}
let module = CompilerModuleChunk::new(
false,
name.clone(),
path.to_str().unwrap().to_string(),
contents,
);
if self.modules.len() > MAX_MODULES {
println!(
"[{}:{}] Can't load more than {} modules (maybe recursive imports?)",
self.current_module().scanner.file.clone(),
self.current_module().scanner.cur_line,
MAX_MODULES
);
exit(0);
}
self.modules.push(module);
self.parent_modules.push(self.current_module);
self.current_module = self.modules.len() - 1;
self.current_module_code = self.current_module;
self.module_table
.insert(name.clone(), self.modules.len() - 1);
// self.current_module().scanner.cur_line = 0;
let first_token = self.current_module().scanner.scan_token();
self.current_module().tokens.push(first_token.clone()); // Load up the first token
self.current_module()
.functions
.push(FunctionChunk::new(None, 0, FunctionType::Script)); // Start the compilation with a top level function
// Hack to account for the case where the first token is a TokenError
if let TokenType::Error = first_token.token_type {
self.advance();
self.error(first_token.lexeme.as_str());
}
while !self.match_cur(TokenType::EOF) {
self.declaration();
}
// idk if we need this tbh
self.end_compilation();
// now we need to add the module to the module table
let index_of_module = self.current_module;
self.current_module = self.parent_modules.pop().unwrap();
self.current_module_code = self.current_module;
// we create a global variable with the name of the module
self.emit_constant(Value::PhoenixModule(index_of_module));
let index = self.identifier_constant(&name);
self.define_variable(index);
self.emit_instr(OpImport(index_of_module));
// self.emit_instr(OpCode::OpPop);
}
fn return_statement(&mut self) {
if self.current_fn_type() == FunctionType::Script {
self.error("Cannot return from top-level code");
}
if self.match_cur(TokenType::Semicolon) {
// Nil return
self.emit_return();
} else {
if self.current_fn_type() == FunctionType::Initializer {
self.error("Cannot return a value from an initializer");
}
self.expression();
self.consume(TokenType::Semicolon, "Expected ';' after return value");
self.emit_instr(OpReturn);
}
}
fn if_statement(&mut self) {
// optional ( ) around the condition
// self.consume(TokenType::LeftParen, "Expected '(' after 'if'");
if self.match_cur(TokenType::LeftParen) {
self.advance();
self.expression();
self.consume(TokenType::RightParen, "Expected ')' after condition");
} else {
self.expression();
}
// Keep track of where we put the first conditional jump
let jump_index = self.emit_jif();
self.emit_instr(OpPop); // Pop off the if conditional in the 'then' case
self.statement(); // Then case
if self.match_cur(TokenType::Else) {
let else_jump = self.emit_jump(); // Keep track of where we put the jump to go over the else statement
self.patch_jump(jump_index);
self.emit_instr(OpPop); // Pop off the if conditional if we jump over the 'then' case
self.statement(); // Else case
self.patch_jump(else_jump);
} else {
self.patch_jump(jump_index); // No else case, so just jump to right after
}
}
fn while_statement(&mut self) {
let loop_start = self.current_chunk().code.len();
// self.consume(TokenType::LeftParen, "Expected '(' after 'while'");
self.expression();
// self.consume(TokenType::RightParen, "Expected ')' after loop condition");
let exit_jump = self.emit_jif();
self.emit_instr(OpPop);
self.statement();
self.emit_loop(loop_start);
self.patch_jump(exit_jump);
self.emit_instr(OpPop);
}
fn for_statement(&mut self) {
self.consume(TokenType::LeftParen, "Expected '(' after 'for'");
self.current_module().resolver.begin_scope();
// First clause: Can be var declaration or expression
if self.match_cur(TokenType::Semicolon) {
// Do nothing
} else if self.match_cur(TokenType::Var) {
self.var_declaration();
} else {
self.expression_statement(); //
}
let mut loop_start = self.current_chunk().code.len(); // Loop should include 2nd and 3rd clauses (if they exist)
let mut exit_jump = None;
// Loop conditional
if !self.match_cur(TokenType::Semicolon) {
self.expression();
self.consume(TokenType::Semicolon, "Expected ';' after loop condition");
exit_jump = Some(self.emit_jif());
self.emit_instr(OpPop); // Pop condition if we didn't jump
} // Note: if this conditional is not found, then there is no way to jump out of the loop
if !self.match_cur(TokenType::RightParen) {
// Jump to body, set this point to be the one to loop back to after executing the body, jump to next iteration
let body_jump = self.emit_jump(); // Jump to after the increment and the loop
let increment_start = self.current_chunk().code.len();
self.expression(); // Parse the increment expression
self.emit_instr(OpPop); // Pop the remaining value
self.consume(TokenType::RightParen, "Expected ')' after for loop clauses");
self.emit_loop(loop_start); // Loop back to the start after increment
loop_start = increment_start; // Make the body go to the start of the increment instead of the start of the loop
self.patch_jump(body_jump); // Patching up the body jump
}
self.statement();
self.emit_loop(loop_start);
if let Some(offset) = exit_jump {
self.patch_jump(offset);
self.emit_instr(OpPop);
}
self.end_scope();
}
fn block(&mut self) {
while !self.check(TokenType::RightBrace) && !self.check(TokenType::EOF) {
self.declaration();
}
self.consume(TokenType::RightBrace, "Expected '}' after block"); // Fails if we hit EOF instead
}
/// Parses a 'this' keyword by just treating it as a special class-only variable that will be magically instantiated
/// Our resolver will automatically put the 'this' variable in locals slot 0 for any methods, so this (ha) will always result in a Get/Set Local op being emitted
fn this(&mut self) {
if self.current_module().current_class.is_none() {
self.error("Cannot use keyword 'this' outside of a class");
}
self.variable(false);
}
/// Consumes super.method_name and emits an OpGetSuper(index of the "method_name" identifier)
fn super_(&mut self) {
if self.current_module().current_class.is_none() {
self.error("Cannot use keyword 'super' outside of a class");
return; // Ideally we would attempt to compile the rest of the expression, but trying to continue will cause a panic
}
let superclass_index = if self.current_class().superclass.is_none() {
self.error("Cannot use keyword 'super' in a class which does not inherit a class");
0 // Random value, we don't care that this value is wrong because we're going to exit because of the error anyway
} else {
self.current_class().superclass.unwrap()
};
self.consume(TokenType::Dot, "Expected '.' after 'super'");
self.consume(TokenType::Identifier, "Expected superclass method name");
let name = self.previous().lexeme.clone();
let name_index = self.identifier_constant(&name);
// At the time of OpGetSuper we want to know 2 things
// 1. The superclass we're going to be looking for values in
// 2. A pointer to the instance we want to bind the method to
let superclass_val = Value::PhoenixClass(superclass_index);
self.emit_constant(superclass_val);
self.named_variable(&String::from("this"), false); // Slightly better?
self.emit_instr(OpGetSuper(name_index));
}
fn method(&mut self) {
self.consume(TokenType::Identifier, "Expected method name");
let name = self.previous().lexeme.clone();
let name_index = self.identifier_constant(&name);
let index = if name.eq("init") {
self.current_class().has_init = true;
self.function(FunctionType::Initializer)
} else {
self.function(FunctionType::Method)
};
self.current_class().methods.insert(name_index, index); // Note: This provides method overriding since we do not check if the name already existed in the map
// NOTE!! this way of doing methods does NOT bind closures... So there is a very very stupid way this could go wrong
// Something like fun thing() { class Inner { method() { // use a local variable from thing in here }}}
// ...
// ...
// Fuck it
// This is a feature
// Not a bug
// I swear
}
/// Compiles the function into a new FunctionChunk, adds it to the current parser, adds the PhoenixFunction object to the constants stack, emits a OpConstant pointing to it and a OpClosure to wrap it
fn function(&mut self, fun_type: FunctionType) -> usize {
//let mut function_parser = self.from_old(fun_type);
let index = self.start_child(fun_type);
self.current_module().resolver.begin_scope();
self.consume(TokenType::LeftParen, "Expected '(' after function name");
if !self.check(TokenType::RightParen) {
loop {
let param_constant = self.parse_variable("Expected parameter name");
self.define_variable(param_constant);
let cur_function = self.current_fn();
cur_function.arity += 1;
if cur_function.arity > 255 {
self.error("Cannot have more than 255 parameters");
}
if !self.match_cur(TokenType::Comma) {
break;
}
}
}
self.consume(
TokenType::RightParen,
"Expected ')' after function parameters",
);
self.consume(TokenType::LeftBrace, "Expected '{' before function body");
self.block();
let upvalues = self.current_module().resolver.pop();
let has_upvalues = !upvalues.is_empty();
if !upvalues.is_empty() {
self.current_fn().set_upvalues(upvalues); // Gotta set this before end_child() switches what the current_fn is
}
self.end_child();
if fun_type != FunctionType::Method && fun_type != FunctionType::Initializer {
// We don't need this for methods because they are statically loaded into the ClassChunk, not at runtime on the stack
self.emit_constant(Value::PhoenixFunction(index));
if has_upvalues {
self.emit_instr(OpClosure);
}
}
index
}
fn expression_statement(&mut self) {
self.expression();
self.consume(TokenType::Semicolon, "Expected ';' after value");
self.emit_instr(OpPop);
}
fn expression(&mut self) {
self.parse_precedence(Precedence::Assignment)
}
fn and_operator(&mut self) {
let end_jump = self.emit_jif();
self.emit_instr(OpPop);
self.parse_precedence(Precedence::And); // Parse right hand side of the infix expression
self.patch_jump(end_jump); // Jump to after it if the first argument was already false, leaving the false value on the top of the stack to be the result
// Otherwise the first argument is true, so the value of the whole and is equal to the value of the second argument, so just proceed as normal
}
fn or_operator(&mut self) {
// If false then execute the other expression
let else_jump = self.emit_jif();
// If the first one is already truthy, go to the end
let end_jump = self.emit_jump();
self.patch_jump(else_jump);
self.emit_instr(OpPop);
self.parse_precedence(Precedence::Or);
self.patch_jump(end_jump);
}
fn number(&mut self) {
// We trust that the scanner has given us something that looks like a number (124214.52)
// BUT the scanner does NOT check the size, so this parse to f32 can still fail due to overflow
let s = &self.previous().lexeme;
// we want to cast all numbers first to i64, and if that fails to f32, because normally we want integers
if let Ok(value) = s.parse::<i64>() {
self.emit_constant(Value::Long(value));
} else {
// we try it as a long, maybe it's an integer
if let Ok(value) = if s.ends_with('f') {
&s[0..s.len() - 1]
} else {
s
}
.parse::<f32>()
{
self.emit_constant(Value::Float(value));
} else {
self.error(format!("Invalid number: {s}").as_str());
}
}
}
fn literal(&mut self) {
match self.previous().token_type {
TokenType::False => self.emit_instr(OpFalse),
TokenType::True => self.emit_instr(OpTrue),
TokenType::Nil => self.emit_instr(OpNil),
_ => unreachable!(
"Unreachable state reached, attempted to make a literal out of a non-literal type???"
),
}
}
fn string(&mut self) {
let str_val = self.previous().lexeme.clone();
let cleaned = str_val[1..str_val.len() - 1].to_string();
self.emit_constant(Value::PhoenixString(cleaned));
self.emit_instr(OpCreateString);
}
fn list(&mut self, _can_assign: bool) {
// * list: [1, 2, 3, 4, ...]
let mut size = 0;
if !self.check(TokenType::RightBracket) {
loop {
self.expression();
size += 1;
if !self.match_cur(TokenType::Comma) {
break;
}
}
}
self.consume(TokenType::RightBracket, "Expected ']' after list");
self.emit_instr(OpCreateList(size));
}
fn hashmap(&mut self, _can_assign: bool) {
// hashmap looks like this: var hashmap = { "key": "value", "key2": "value2" }
// and we should push all the values in this order on the stack and then emit OpCode::CreateHashMap(size)
// with size equal to the amount of keys
let mut size = 0;
if !self.check(TokenType::RightBrace) {
loop {
self.expression();
self.consume(TokenType::Colon, "Expected ':' after key");
self.expression();
size += 1;
if !self.match_cur(TokenType::Comma) {
break;
}
}
}
self.consume(TokenType::RightBrace, "Expected '}' after hashmap");
self.emit_instr(OpCreateHashMap(size));
}
/// Parse an identifier that we know to be a variable
///
/// Eventually emits a get instr or a set instr + the instructions to process the expr
///
/// Note: Uses named_variable to do all the heavy lifting
fn variable(&mut self, can_assign: bool) {
let name = &self.previous().lexeme.clone();
self.named_variable(name, can_assign)
}
// Note: parse_precedence with TokenIdentifier => variable() -> named_variable(previous.lexeme)
// Could be a getter or a setter, so lookahead for a '='
/// Helper function for variable.
/// 1. Determine if this is a local var, upvalue, or global and make the get and set ops
/// 2. Determine if this is a get or a set based on can_assign and the existence of a '='
fn named_variable(&mut self, name: &String, can_assign: bool) {
let local_arg = match self.current_module().resolver.resolve_local(name) {
Some(opt) => opt,
None => {
self.error("Cannot read local variable in its own initializer");
return;
}
};
// Figure out which type of get/set OpCodes we want
let (get_op, set_op) = if let Some(local_index) = local_arg {
(OpGetLocal(local_index), OpSetLocal(local_index))
} else if let Some(upvalue_index) = self.current_module().resolver.resolve_upvalue(name) {
(OpGetUpvalue(upvalue_index), OpSetUpvalue(upvalue_index))
} else {
let global_arg = self.identifier_constant(name); // Does NOT check at compile time if this variable can be resolved
if self.match_cur(TokenType::LeftParen) {
let arg_count = self.argument_list();
(
OpCallGlobal(self.current_module, global_arg, arg_count),
OpSetGlobal(global_arg),
)
} else {
(OpGetGlobal(global_arg), OpSetGlobal(global_arg))
}
};
// hacky way to implement all kinds of operations
// todo: make this better
// todo: check if this works correctly with classes and all that stuff
// Figure out if we want to use the get or the set from the pair of possible ops we determined earlier
macro_rules! emit_assign {
($operation: path) => {{
self.emit_instr(get_op);
self.advance();
self.expression();
self.emit_instr($operation);
self.emit_instr(set_op);
}};
}
if can_assign {
match self.current().token_type {
TokenType::Equal => {
self.advance();
self.expression();
self.emit_instr(set_op);
}
TokenType::PlusAssign => emit_assign!(OpAdd),
TokenType::MinusAssign => emit_assign!(OpSubtract),
TokenType::StarAssign => emit_assign!(OpMultiply),
TokenType::SlashAssign => emit_assign!(OpDivide),
TokenType::PlusPlus => {
self.emit_instr(get_op);
self.emit_constant(Value::Long(1));
self.emit_instr(OpAdd);
self.emit_instr(set_op);
}
TokenType::MinusMinus => {
self.emit_instr(get_op);
self.emit_constant(Value::Long(1));
self.emit_instr(OpSubtract);
self.emit_instr(set_op);
}
TokenType::LeftBracket => {
// check if this is a list
self.advance();
self.emit_instr(get_op);
self.expression();
self.consume(TokenType::RightBracket, "Expected ']' after index");
if self.match_cur(TokenType::Equal) {
self.expression();
self.emit_instr(OpSetIndex);
// self.emit_instr(set_op);
} else {
self.emit_instr(OpGetIndex);
}
}
_ => self.emit_instr(get_op),
}
} else {
self.emit_instr(get_op);
}
}
fn grouping(&mut self) {
self.expression();
self.consume(TokenType::RightParen, "Expected ')' after expression");
}
fn unary(&mut self) {
let operator_type = self.previous().token_type;
self.parse_precedence(Precedence::Unary); // evaluate the expression in the unary
match operator_type {
TokenType::Minus => self.emit_instr(OpNegate),
TokenType::Bang => self.emit_instr(OpNot),
_ => (), // Error?
}
}
fn binary(&mut self) {
let operator_type = self.previous().token_type;
let rule = get_rule(operator_type);
self.parse_precedence(rule.next_precedence());
// Stack based vm, so emit the binary instr after
match operator_type {
TokenType::Plus => self.emit_instr(OpAdd),
TokenType::Minus => self.emit_instr(OpSubtract),
TokenType::Star => self.emit_instr(OpMultiply),
TokenType::Slash => self.emit_instr(OpDivide),
TokenType::BangEqual => self.emit_instrs(&[OpEqual, OpNot]),
TokenType::EqualEqual => self.emit_instr(OpEqual),
TokenType::Greater => self.emit_instr(OpGreater),
TokenType::GreaterEqual => self.emit_instrs(&[OpLess, OpNot]),
TokenType::Less => self.emit_instr(OpLess),
TokenType::LessEqual => self.emit_instrs(&[OpGreater, OpNot]),
_ => {
self.error("Invalid binary operator");
} // error?
}
}
/// Infix operation for function calls, assumes that the PhoenixFunction will be at the top of the stack when this is called, usually
/// via a global/local variable resolution
fn call(&mut self) {
let arg_count = self.argument_list();
self.emit_instr(OpCall(arg_count, self.current_module))
}
/// Parses expressions while looking for commas between and for the closing paren. Leaves the values on the stack
fn argument_list(&mut self) -> usize {
let mut arg_count = 0;
if !self.check(TokenType::RightParen) {
loop {
self.expression();
if arg_count == 255 {
self.error("Cannot have more than 255 arguments");
}
arg_count += 1;
if !self.match_cur(TokenType::Comma) {
break;
}
}
}
self.consume(
TokenType::RightParen,
"Expected ')' after function argument list",
);
arg_count
}
fn dot(&mut self, can_assign: bool) {
let module_name = &self.current_module_ref().tokens
[self.current_module_ref().tokens.len() - 3]
.lexeme
.clone();
// check if this is a module name
if self.module_table.contains_key(module_name) {
// pop the name of the module off the stack
self.emit_instr(OpPop);
// get the index of the module
let module_index = *self.module_table.get(module_name).unwrap();
// let function_index = self.identifier_constant_module(function_name, module_index);
// self.emit_instr(OpGetModuleVar(module_index, function_index));
// self.emit_instr(OpCall(arg_count, module_index));
let current_module = self.current_module;
self.current_module = module_index;
// dbg!(self.current());
self.expression();
self.current_module = current_module;
return;
}
self.consume(TokenType::Identifier, "Expected property name after '.'");
let name_index = self.identifier_constant(&self.previous().lexeme.clone());
// let function_name = &self.current_module_ref().tokens
// [self.current_module_ref().tokens.len() - 2]
// .lexeme
// .clone();
if can_assign && self.match_cur(TokenType::Equal) {
// We check can_assign so that a + b.c = 3 does not invalidly emit a set op
// Setter
self.expression();
self.emit_instr(OpSetProperty(name_index));
} else if self.match_cur(TokenType::LeftParen) {
// A left paren after the initializer will usually mean a method invocation, so compress that into a single OpCode here
// but it could also be a call to a function in a module with that name, so we need to check for that
// println!("{}.{} {}", module_name, function_name, name_index);
let arg_count = self.argument_list();
self.emit_instr(OpInvoke(name_index, arg_count, self.current_module));
} else if self.match_cur(TokenType::LeftBracket) {
self.emit_instr(OpGetProperty(name_index));
self.expression();
self.consume(TokenType::RightBracket, "Expected ']' after index");
if self.match_cur(TokenType::Equal) {
self.expression();
self.emit_instr(OpSetIndex);
// self.emit_instr(set_op);
} else {
self.emit_instr(OpGetIndex);
}
} else {
self.emit_instr(OpGetProperty(name_index));
}
}
/// Sets the compiler to generate a new function chunk for the next segment of code
fn start_child(&mut self, function_type: FunctionType) -> usize {
let function_name = self.previous().lexeme.clone();
self.current_module().functions.push(FunctionChunk::new(
Some(function_name),
0,
function_type,
));
self.current_module().resolver.push(function_type);
let index = self.current_module_ref().current_function;
self.current_module().parent_functions.push(index);
self.current_module().current_function = self.current_module().functions.len() - 1;
self.current_module().functions.len() - 1
}
/// Switches the current chunk out of the new function def
fn end_child(&mut self) {
// Emit an implicit nil return if not specified explicit
let last_instr = self.current_chunk_ref().code.last();
if last_instr.is_none() || last_instr.unwrap().op_code != OpReturn {
self.emit_return();
}
self.current_module().current_function =
self.current_module().parent_functions.pop().unwrap();
}
#[deprecated(note = "Use new instead")]
pub fn new_default(code: String, quiet: bool, start_line: usize) -> Compiler {
Compiler::new_file(
DEFAULT_FILE_NAME.to_string(),
code,
quiet,
start_line,
false,
)
}
pub fn new_file(
file: String,
code: String,
quiet: bool,
start_line: usize,
debug_mode: bool,
) -> Compiler {
let mut compiler = Compiler {
modules: vec![CompilerModuleChunk::new(
true,
"main".to_string(),
file.to_string(),
code.clone(),
)],
module_table: Default::default(),
parent_modules: vec![],
current_module: 0,
current_module_code: 0,
had_error: false,
panic_mode: false,
quiet_mode: quiet,
debug_mode,
};
compiler.new_start(file, code, quiet, start_line, 0);
compiler
}
/// whether it had an error
pub fn new_start(
&mut self,
file: String,
code: String,
quiet: bool,
start_line: usize,
start_pos: usize,
) {
self.current_module().scanner = Scanner::new(file, code, start_line);
self.current_module().scanner.cur_pos = start_pos;
self.current_module().scanner.start_pos = start_pos;
self.quiet_mode = quiet;
}
pub fn compile(&mut self, debug: bool) -> Option<CompilationResult> {
self.debug_mode = debug;
let first_token = self.current_module().scanner.scan_token();
self.current_module().tokens.push(first_token.clone()); // Load up the first token
self.current_module()
.functions
.push(FunctionChunk::new(None, 0, FunctionType::Script)); // Start the compilation with a top level function
// Hack to account for the case where the first token is a TokenError
if let TokenType::Error = first_token.token_type {
self.advance();
self.error(first_token.lexeme.as_str());
}
while !self.match_cur(TokenType::EOF) {
self.declaration();
}
self.end_compilation();
if !self.had_error {
if debug {
for m in self.modules.iter() {
println!("========= module: {} =========", m.scanner.file);
for (index, fn_chunk) in m.functions.iter().enumerate() {
if fn_chunk.fn_type != FunctionType::Method
&& fn_chunk.fn_type != FunctionType::Initializer
{
disassemble_fn_chunk(
m.scanner.file.as_str().to_string(),
index,
fn_chunk,
&m.constants,
&m.identifier_constants,
);
}
}
for class_chunk in m.classes.iter() {
disassemble_class_chunk(
class_chunk,
&m.functions,
&m.classes,
&m.constants,
&m.identifier_constants,
);
}
}
}
Some(CompilationResult {
version: VERSION.to_string(),
modules: self
.modules
.clone()
.iter()
.map(|m| ModuleChunk::from(m.clone()))
.collect(),
modules_table: self.module_table.clone(),
cur_pos: self.current_module().scanner.cur_pos,
})
} else {
None
}
}
pub fn compile_code(code: String, debug: bool) -> Option<CompilationResult> {
let mut compiler = Compiler::new_file(DEFAULT_FILE_NAME.to_string(), code, false, 0, debug);
compiler.compile(debug)
}
}
impl Clone for Compiler {
fn clone(&self) -> Self {
Compiler {
modules: self.modules.clone(),
module_table: self.module_table.clone(),
parent_modules: self.parent_modules.clone(),
current_module: self.current_module,
current_module_code: 0,
had_error: self.had_error,
panic_mode: self.panic_mode,
quiet_mode: self.quiet_mode,
debug_mode: false,
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub struct CompilationResult {
pub version: String,
pub modules: Vec<ModuleChunk>,
pub modules_table: HashMap<String, usize>,
pub cur_pos: usize,
}
impl Default for CompilationResult {
fn default() -> Self {
CompilationResult::new()
}
}
impl CompilationResult {
pub fn new() -> CompilationResult {
CompilationResult {
version: VERSION.to_string(),
modules: vec![],
modules_table: Default::default(),
cur_pos: 0,
}
}
// pub fn append(&mut self, mut other: CompilationResult) {
// self.classes.append(&mut other.classes);
// self.functions.append(&mut other.functions);
// // filter out all functions that f.fn_type == FunctionType::Script
// self.functions.retain(|f| f.fn_type != FunctionType::Script);
// // remove all duplicates (fu.name == f.name)
// let mut used_names = Vec::new();
// self.functions.retain(|f| {
// return if used_names.contains(&f.clone().name.unwrap()) {
// false
// } else {
// used_names.push(f.clone().name.unwrap());
// true
// };
// });
// // debug the functions
// for f in self.functions.clone() {
// println!("got function {}", f.name.unwrap());
// }
// self.constants.append(&mut other.constants);
// self.identifier_constants.append(&mut other.identifier_constants);
// }
}