phoenix_circuits/
circuit_impl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// Copyright (c) DUSK NETWORK. All rights reserved.

//! The [`Circuit`] trait implementation on [`TxCircuit`].

use dusk_bls12_381::BlsScalar;
use dusk_jubjub::{GENERATOR, GENERATOR_NUMS};
use dusk_plonk::prelude::{
    Circuit, Composer, Constraint, Error as PlonkError, Witness, WitnessPoint,
};
use dusk_poseidon::{Domain, HashGadget};
use jubjub_schnorr::gadgets;
use poseidon_merkle::zk::opening_gadget;

use crate::{sender_enc, InputNoteInfo, TxCircuit};

impl<const H: usize, const I: usize> Circuit for TxCircuit<H, I> {
    /// Transaction gadget proving the following properties in ZK for a generic
    /// `I` input-notes and [`OUTPUT_NOTES`] output-notes:
    ///
    /// 1. Membership: every input-note is included in the Merkle tree of notes.
    /// 2. Ownership: the sender holds the note secret key for every input-note.
    /// 3. Nullification: the nullifier is calculated correctly.
    /// 4. Minting: the value commitment for every input-note is computed
    ///    correctly.
    /// 5. Balance integrity: the sum of the values of all input-notes is equal
    ///    to the sum of the values of all output-notes + the gas fee
    ///    + a deposit, where a deposit refers to funds being transferred to a
    ///    contract.
    /// 6. Sender-data: Verify that the sender was encrypted correctly for each
    ///    output-note.
    ///
    /// The circuit has the following public inputs:
    /// - `payload_hash`
    /// - `root`
    /// - `[nullifier; I]`
    /// - `[output_value_commitment; 2]`
    /// - `max_fee`
    /// - `deposit`
    /// - `(npk_out_0, npk_out_1)`
    /// - `(enc_A_npk_out_0, enc_B_npk_out_0)`
    /// - `(enc_A_npk_out_1, enc_B_npk_out_1)`
    fn circuit(&self, composer: &mut Composer) -> Result<(), PlonkError> {
        // Make the payload hash a public input of the circuit
        let payload_hash = composer.append_public(self.payload_hash);

        // Append the root as public input
        let root_pi = composer.append_public(self.root);

        let mut input_notes_sum = Composer::ZERO;

        // Check membership, ownership and nullification of all input notes
        for input_note_info in &self.input_notes_info {
            let (
                note_pk,
                note_pk_p,
                note_type,
                pos,
                value,
                value_blinder,
                nullifier,
                signature_u,
                signature_r,
                signature_r_p,
            ) = input_note_info.append_to_circuit(composer);

            // Verify: 2. Ownership
            gadgets::verify_signature_double(
                composer,
                signature_u,
                signature_r,
                signature_r_p,
                note_pk,
                note_pk_p,
                payload_hash,
            )?;

            // Verify: 3. Nullification
            let computed_nullifier = HashGadget::digest(
                composer,
                Domain::Other,
                &[*note_pk_p.x(), *note_pk_p.y(), pos],
            )[0];
            composer.assert_equal(computed_nullifier, nullifier);

            // Perform a range check ([0, 2^64 - 1]) on the value of the note
            composer.component_range::<32>(value);

            // Sum up all the input note values
            let constraint = Constraint::new()
                .left(1)
                .a(input_notes_sum)
                .right(1)
                .b(value);
            input_notes_sum = composer.gate_add(constraint);

            // Commit to the value of the note
            let pc_1 = composer.component_mul_generator(value, GENERATOR)?;
            let pc_2 = composer
                .component_mul_generator(value_blinder, GENERATOR_NUMS)?;
            let value_commitment = composer.component_add_point(pc_1, pc_2);

            // Compute the note hash
            let note_hash = HashGadget::digest(
                composer,
                Domain::Other,
                &[
                    note_type,
                    *value_commitment.x(),
                    *value_commitment.y(),
                    *note_pk.x(),
                    *note_pk.y(),
                    pos,
                ],
            )[0];

            // Verify: 1. Membership
            let root = opening_gadget(
                composer,
                &input_note_info.merkle_opening,
                note_hash,
            );
            composer.assert_equal(root, root_pi);
        }

        let mut tx_output_sum = Composer::ZERO;

        // Commit to all output notes
        for output_note_info in &self.output_notes_info {
            // Append the witnesses to the circuit
            let value = composer.append_witness(output_note_info.value);
            // Append the value-commitment as public input
            let expected_value_commitment =
                composer.append_public_point(output_note_info.value_commitment);
            let value_blinder =
                composer.append_witness(output_note_info.value_blinder);

            // Perform a range check ([0, 2^64 - 1]) on the value of the note
            composer.component_range::<32>(value);

            // Sum up all the output note values
            let constraint =
                Constraint::new().left(1).a(tx_output_sum).right(1).b(value);
            tx_output_sum = composer.gate_add(constraint);

            // Commit to the value of the note
            let pc_1 = composer.component_mul_generator(value, GENERATOR)?;
            let pc_2 = composer
                .component_mul_generator(value_blinder, GENERATOR_NUMS)?;
            let computed_value_commitment =
                composer.component_add_point(pc_1, pc_2);

            // Verify: 4. Minting
            composer.assert_equal_point(
                expected_value_commitment,
                computed_value_commitment,
            );
        }

        // Append max_fee and deposit as public inputs
        let max_fee = composer.append_public(self.max_fee);
        let deposit = composer.append_public(self.deposit);

        // Add the deposit and the max fee to the sum of the output-values
        let constraint = Constraint::new()
            .left(1)
            .a(tx_output_sum)
            .right(1)
            .b(max_fee)
            .fourth(1)
            .d(deposit);
        tx_output_sum = composer.gate_add(constraint);

        // Verify: 5. Balance integrity
        composer.assert_equal(input_notes_sum, tx_output_sum);

        // Verify: 6. Sender-data
        // appends as public input the note-pk of both output-notes:
        // `(npk_out_0, npk_out_1)`
        // and the encryption of the sender-pk.A and sender-pk.B,
        // encrypted first with the note-pk of one output note:
        // `(enc_A_npk_out_0, enc_B_npk_out_0)
        // and then with the note-pk of the other note:
        // `(enc_A_npk_out_1, enc_B_npk_out_1)
        sender_enc::gadget(
            composer,
            self.sender_pk,
            self.signatures,
            [
                self.output_notes_info[0].note_pk,
                self.output_notes_info[1].note_pk,
            ],
            [
                self.output_notes_info[0].sender_blinder,
                self.output_notes_info[1].sender_blinder,
            ],
            self.output_notes_info[0].sender_enc,
            self.output_notes_info[1].sender_enc,
            payload_hash,
        )?;

        Ok(())
    }
}

impl<const H: usize> InputNoteInfo<H> {
    fn append_to_circuit(
        &self,
        composer: &mut Composer,
    ) -> (
        WitnessPoint,
        WitnessPoint,
        Witness,
        Witness,
        Witness,
        Witness,
        Witness,
        Witness,
        WitnessPoint,
        WitnessPoint,
    ) {
        // Append the nullifier as public-input
        let nullifier = composer.append_public(self.nullifier);

        let note_pk = composer
            .append_point(*self.note.stealth_address().note_pk().as_ref());
        let note_pk_p = composer.append_point(self.note_pk_p);

        let note_type = composer
            .append_witness(BlsScalar::from(self.note.note_type() as u64));
        let pos = composer.append_witness(BlsScalar::from(*self.note.pos()));

        let value = composer.append_witness(self.value);
        let value_blinder = composer.append_witness(self.value_blinder);

        let signature_u = composer.append_witness(*self.signature.u());
        let signature_r = composer.append_point(self.signature.R());
        let signature_r_p = composer.append_point(self.signature.R_prime());

        (
            note_pk,
            note_pk_p,
            note_type,
            pos,
            value,
            value_blinder,
            nullifier,
            signature_u,
            signature_r,
            signature_r_p,
        )
    }
}