1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! Module dedicated to PGP signing.
//!
//! This module exposes a simple function [`sign`] and its associated
//! [`Error`]s.

use pgp_native::{
    crypto::{hash::HashAlgorithm, public_key::PublicKeyAlgorithm},
    types::{KeyId, KeyTrait, Mpi, PublicKeyTrait, SecretKeyRepr, SecretKeyTrait},
    Message, PublicKey, PublicSubkey, SignedSecretKey, SignedSecretSubKey,
};
use rand::{CryptoRng, Rng};
use std::io;
use tokio::task;

use crate::{Error, Result};

#[derive(Debug)]
pub enum PublicKeyOrSubkey {
    Key(PublicKey),
    Subkey(PublicSubkey),
}

#[derive(Debug)]
pub enum SignedSecretKeyOrSubkey<'a> {
    Key(&'a SignedSecretKey),
    Subkey(&'a SignedSecretSubKey),
}

impl KeyTrait for SignedSecretKeyOrSubkey<'_> {
    fn fingerprint(&self) -> Vec<u8> {
        match self {
            Self::Key(k) => k.fingerprint(),
            Self::Subkey(k) => k.fingerprint(),
        }
    }

    fn key_id(&self) -> KeyId {
        match self {
            Self::Key(k) => k.key_id(),
            Self::Subkey(k) => k.key_id(),
        }
    }

    fn algorithm(&self) -> PublicKeyAlgorithm {
        match self {
            Self::Key(k) => k.algorithm(),
            Self::Subkey(k) => k.algorithm(),
        }
    }
}

impl PublicKeyTrait for SignedSecretKeyOrSubkey<'_> {
    fn verify_signature(
        &self,
        hash: HashAlgorithm,
        data: &[u8],
        sig: &[Mpi],
    ) -> pgp_native::errors::Result<()> {
        match self {
            Self::Key(k) => k.verify_signature(hash, data, sig),
            Self::Subkey(k) => k.verify_signature(hash, data, sig),
        }
    }

    fn encrypt<R: CryptoRng + Rng>(
        &self,
        rng: &mut R,
        plain: &[u8],
    ) -> pgp_native::errors::Result<Vec<Mpi>> {
        match self {
            Self::Key(k) => k.encrypt(rng, plain),
            Self::Subkey(k) => k.encrypt(rng, plain),
        }
    }

    fn to_writer_old(&self, writer: &mut impl io::Write) -> pgp_native::errors::Result<()> {
        match self {
            Self::Key(k) => k.to_writer_old(writer),
            Self::Subkey(k) => k.to_writer_old(writer),
        }
    }
}

impl<'a> SecretKeyTrait for SignedSecretKeyOrSubkey<'a> {
    type PublicKey = PublicKeyOrSubkey;

    fn unlock<F, G>(&self, pw: F, work: G) -> pgp_native::errors::Result<()>
    where
        F: FnOnce() -> String,
        G: FnOnce(&SecretKeyRepr) -> pgp_native::errors::Result<()>,
    {
        match self {
            Self::Key(k) => k.unlock(pw, work),
            Self::Subkey(k) => k.unlock(pw, work),
        }
    }

    fn create_signature<F>(
        &self,
        key_pw: F,
        hash: HashAlgorithm,
        data: &[u8],
    ) -> pgp_native::errors::Result<Vec<Mpi>>
    where
        F: FnOnce() -> String,
    {
        match self {
            Self::Key(k) => k.create_signature(key_pw, hash, data),
            Self::Subkey(k) => k.create_signature(key_pw, hash, data),
        }
    }

    fn public_key(&self) -> Self::PublicKey {
        match self {
            Self::Key(k) => PublicKeyOrSubkey::Key(k.public_key()),
            Self::Subkey(k) => PublicKeyOrSubkey::Subkey(k.public_key()),
        }
    }
}

/// Find primary key or subkey to use for signing.
///
/// First, tries to use subkeys. If none of the subkeys are suitable
/// for signing, tries to use primary key. Returns `None` if the
/// public key cannot be used for signing.
fn find_skey_for_signing(key: &SignedSecretKey) -> Option<SignedSecretKeyOrSubkey> {
    if key.is_signing_key() {
        Some(SignedSecretKeyOrSubkey::Key(key))
    } else {
        key.secret_subkeys
            .iter()
            .find(|subkey| subkey.is_signing_key())
            .map(SignedSecretKeyOrSubkey::Subkey)
    }
}

/// Signs given bytes using the given private key and its passphrase.
pub async fn sign(
    skey: SignedSecretKey,
    passphrase: impl ToString,
    plain_bytes: Vec<u8>,
) -> Result<Vec<u8>> {
    let passphrase = passphrase.to_string();

    task::spawn_blocking(move || {
        let skey = find_skey_for_signing(&skey).ok_or(Error::FindSignedSecretKeyForSigningError)?;

        let msg = Message::new_literal_bytes("", &plain_bytes)
            .sign(&skey, || passphrase, HashAlgorithm::SHA2_256)
            .map_err(Error::SignMessageError)?;

        let signature_bytes = msg
            .into_signature()
            .to_armored_bytes(None)
            .map_err(Error::ExportSignedMessageToArmoredBytesError)?;

        Ok(signature_bytes)
    })
    .await?
}