1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use operation::number::{Number, NumberVector};
use structure::dual::*;
use structure::matrix::*;
use util::non_macro::{cat, zeros};
use Real;

/// Jacobian Matrix
///
/// # Description
/// : Exact jacobian matrix using Automatic Differenitation
///
/// # Type
/// (Vector, F) -> Matrix where F: Fn(Vec<Number>) -> Vec<Number>
///
/// # Examples
/// ```
/// extern crate peroxide;
/// use peroxide::*;
///
/// let x = c!(1, 1);
/// let j = jacobian(f, &x);
/// j.print();
///
/// //      c[0] c[1]
/// // r[0]    1    1
/// // r[1]   -1    2
///
/// fn f(xs: Vec<Number>) -> Vec<Number> {
///     let x = xs[0];
///     let y = xs[1];
///
///     vec![
///        x - y,
///        x + 2.*y,
///    ]
/// }
/// ```
#[allow(non_snake_case)]
pub fn jacobian<F>(g: F, x: &Vec<f64>) -> Matrix
where
    F: Fn(Vec<Number>) -> Vec<Number>,
{
    let f = |x: &Vec<Dual>| g(NumberVector::from_dual_vec(x.clone())).to_dual_vec();
    jacobian_real(Box::new(f), x)
}

/// Jacobian Matrix for Real input
///
/// # Description
/// : Exact jacobian matrix using Automatic Differenitation
///
/// # Type
/// (Box<F>, &Vec<T>) -> Matrix where F: Fn(&Vec<Dual>) -> Vec<Dual>, T: Real
///
/// # Examples
/// ```
/// extern crate peroxide;
/// use peroxide::*;
///
/// let x = c!(1, 1);
/// let j = jacobian_real(Box::new(f), &x);
/// j.print();
///
/// //      c[0] c[1]
/// // r[0]    1    1
/// // r[1]   -1    2
///
/// fn f(xs: &Vec<Dual>) -> Vec<Dual> {
///     let x = xs[0];
///     let y = xs[1];
///
///     vec![
///        x - y,
///        x + 2.*y,
///    ]
/// }
/// ```
#[allow(non_snake_case)]
pub fn jacobian_real<F, T>(f: Box<F>, x: &Vec<T>) -> Matrix
where
    T: Real,
    F: Fn(&Vec<Dual>) -> Vec<Dual>,
{
    let l = x.len();
    let mut x_dual: Vec<Dual> = x
        .clone()
        .into_iter()
        .map(|t| dual(t.to_f64(), 0f64))
        .collect();
    let l2 = f(&x_dual).len();

    let mut J = zeros(l2, l);

    for i in 0..l {
        x_dual[i].set_slope(1f64);
        let slopes = f(&x_dual).slopes();
        J.subs_col(i, &slopes);
        x_dual[i].set_slope(0f64);
    }
    J
}

/// TriDiagonal Matrix Algorithm (TDMA)
///
/// # Description
///
/// Solve tri-diagonal matrix system efficiently (O(n))
/// ```bash
/// |b0 c0         | |x0|   |y0|
/// |a1 b1 c1      | |x1|   |y1|
/// |   a2 b2 c2   | |x2| = |y2|
/// |      ...     | |..|   |..|
/// |         am bm| |xm|   |ym|
/// ```
///
/// # Caution
///
/// You should apply boundary condition yourself
pub fn tdma(a_input: Vec<f64>, b_input: Vec<f64>, c_input: Vec<f64>, y_input: Vec<f64>) -> Matrix {
    let n = b_input.len();
    assert_eq!(a_input.len(), n - 1);
    assert_eq!(c_input.len(), n - 1);
    assert_eq!(y_input.len(), n);

    let a = cat(0f64, a_input.clone());
    let mut b = b_input.clone();
    let c = {
        let mut c_temp = c_input.clone();
        c_temp.push(0f64);
        c_temp.clone()
    };
    let mut y = y_input.clone();

    // Forward substitution
    let mut w = vec![0f64; n];
    for i in 1..n {
        w[i] = a[i] / b[i - 1];
        b[i] = b[i] - w[i] * c[i - 1];
        y[i] = y[i] - w[i] * y[i - 1];
    }

    // Backward substitution
    let mut x = vec![0f64; n];
    x[n - 1] = y[n - 1] / b[n - 1];
    for i in (0..n - 1).rev() {
        x[i] = (y[i] - c[i] * x[i + 1]) / b[i];
    }
    x.to_matrix()
}