1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//! Defines the [PdfMatrix] struct, a container for six floating-point values that represent
//! the six configurable elements of a nine-element 3x3 PDF transformation matrix.

use crate::bindgen::FS_MATRIX;
use crate::error::PdfiumError;
use crate::page::PdfPoints;
use crate::{create_transform_getters, create_transform_setters};
use std::hash::{Hash, Hasher};
use vecmath::{mat3_det, row_mat3_mul};

pub type PdfMatrixValue = f32;

/// Six floating-point values that represent the six configurable elements of a nine-element
/// 3x3 PDF transformation matrix.
///
/// Applying the matrix to any transformable object containing a `set_matrix()` function - such as
/// a page, clip path, individual page object, or page object group - will result in a
/// transformation of that object. Depending on the values specified in the matrix, the object
/// can be moved, scaled, rotated, or skewed.
///
/// **It is rare that a matrix needs to be used directly.** All transformable objects provide
/// convenient and expressive access to the most commonly used transformation operations without
/// requiring a matrix.
///
/// However, a matrix can be convenient when the same transformation values need to be applied
/// to a large set of transformable objects.
///
/// An overview of PDF transformation matrices can be found in the PDF Reference Manual
/// version 1.7 on page 204; a detailed description can be founded in section 4.2.3 on page 207.
#[derive(Debug, Copy, Clone)]
pub struct PdfMatrix {
    pub a: PdfMatrixValue,
    pub b: PdfMatrixValue,
    pub c: PdfMatrixValue,
    pub d: PdfMatrixValue,
    pub e: PdfMatrixValue,
    pub f: PdfMatrixValue,
}

impl PdfMatrix {
    /// A [PdfMatrix] object with all matrix values set to 0.0.
    pub const ZERO: PdfMatrix = Self::zero();

    /// A [PdfMatrix] object with matrix values a and d set to 1.0
    /// and all other values set to 0.0.
    pub const IDENTITY: PdfMatrix = Self::identity();

    #[inline]
    pub(crate) fn from_pdfium(matrix: FS_MATRIX) -> Self {
        Self::new(matrix.a, matrix.b, matrix.c, matrix.d, matrix.e, matrix.f)
    }

    /// Creates a new [PdfMatrix] with the given matrix values.
    #[inline]
    pub const fn new(
        a: PdfMatrixValue,
        b: PdfMatrixValue,
        c: PdfMatrixValue,
        d: PdfMatrixValue,
        e: PdfMatrixValue,
        f: PdfMatrixValue,
    ) -> Self {
        Self { a, b, c, d, e, f }
    }

    /// Creates a new [PdfMatrix] object with all matrix values set to 0.0.
    ///
    /// The return value of this function is identical to the constant [PdfMatrix::ZERO].
    #[inline]
    pub const fn zero() -> Self {
        Self::new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    }

    /// Creates a new [PdfMatrix] object with matrix values a and d set to 1.0
    /// and all other values set to 0.0.
    ///
    /// The return value of this function is identical to the constant [PdfMatrix::IDENTITY].
    #[inline]
    pub const fn identity() -> Self {
        Self::new(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
    }

    #[inline]
    pub(crate) fn as_pdfium(&self) -> FS_MATRIX {
        FS_MATRIX {
            a: self.a,
            b: self.b,
            c: self.c,
            d: self.d,
            e: self.e,
            f: self.f,
        }
    }

    create_transform_setters!(
        Self,
        Result<Self, PdfiumError>,
        "this [PdfMatrix]",
        "this [PdfMatrix].",
        "this [PdfMatrix],"
    );

    // The internal implementation of the transform() function used by the create_transform_setters!() macro.
    fn transform_impl(
        mut self,
        a: PdfMatrixValue,
        b: PdfMatrixValue,
        c: PdfMatrixValue,
        d: PdfMatrixValue,
        e: PdfMatrixValue,
        f: PdfMatrixValue,
    ) -> Result<Self, PdfiumError> {
        let result = row_mat3_mul(
            [
                [self.a, self.b, 0.0],
                [self.c, self.d, 0.0],
                [self.e, self.f, 1.0],
            ],
            [[a, b, 0.0], [c, d, 0.0], [e, f, 1.0]],
        );

        if mat3_det(result) == 0.0 {
            Err(PdfiumError::InvalidTransformationMatrix)
        } else {
            self.a = result[0][0];
            self.b = result[0][1];
            self.c = result[1][0];
            self.d = result[1][1];
            self.e = result[2][0];
            self.f = result[2][1];

            Ok(self)
        }
    }

    create_transform_getters!("this [PdfMatrix]", "this [PdfMatrix].", "this [PdfMatrix],");

    // The internal implementation of the get_matrix_impl() function used by the create_transform_getters!() macro.
    #[inline]
    fn get_matrix_impl(&self) -> Result<PdfMatrix, PdfiumError> {
        Ok(*self)
    }
}

// We could derive PartialEq automatically, but it's good practice to implement PartialEq
// by hand when implementing Hash.

impl PartialEq for PdfMatrix {
    fn eq(&self, other: &Self) -> bool {
        self.a == other.a
            && self.b == other.b
            && self.c == other.c
            && self.d == other.d
            && self.e == other.e
            && self.f == other.f
    }
}

// The PdfMatrixValue values inside PdfMatrix will never be NaN or Infinity, so these implementations
// of Eq and Hash are safe.

impl Eq for PdfMatrix {}

impl Hash for PdfMatrix {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_u32(self.a.to_bits());
        state.write_u32(self.b.to_bits());
        state.write_u32(self.c.to_bits());
        state.write_u32(self.d.to_bits());
        state.write_u32(self.e.to_bits());
        state.write_u32(self.f.to_bits());
    }
}