1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// SPDX-License-Identifier: MIT OR Apache-2.0

/* ---------------------------------------------------------------------------------------------- */

use num_traits::{PrimInt, Unsigned};
use std::convert::TryInto;
use std::fmt::{self, Binary, Debug, LowerHex, UpperHex};
use std::io::{self, ErrorKind};
use std::marker::PhantomData;

use crate::regions::{AsPciSubregion, BackedByPciSubregion, PciRegion};

/* ---------------------------------------------------------------------------------------------- */

use private::Sealed;
mod private {
    /// Like [`crate::device::private::Sealed`].
    pub trait Sealed {}
}

/// Trait for types that represent the value of a PCI field or register.
///
/// This is implemented for [`u8`], [`u16`], and [`u32`].
///
/// This trait is _sealed_, and thus cannot be implemented by users of the crate.
pub trait PciRegisterValue:
    PrimInt + Unsigned + Debug + LowerHex + UpperHex + Binary + Sealed
{
    /// Delegates to [`PciRegion::read_u8`], [`PciRegion::read_le_u16`], or
    /// [`PciRegion::read_le_u32`].
    fn read(region: &dyn PciRegion, offset: u64) -> io::Result<Self>;

    /// Delegates to [`PciRegion::write_u8`], [`PciRegion::write_le_u16`], or
    /// [`PciRegion::write_le_u32`].
    fn write(self, region: &dyn PciRegion, offset: u64) -> io::Result<()>;
}

impl Sealed for u8 {}
impl PciRegisterValue for u8 {
    fn read(region: &dyn PciRegion, offset: u64) -> io::Result<Self> {
        region.read_u8(offset)
    }

    fn write(self, region: &dyn PciRegion, offset: u64) -> io::Result<()> {
        region.write_u8(offset, self)
    }
}

impl Sealed for u16 {}
impl PciRegisterValue for u16 {
    fn read(region: &dyn PciRegion, offset: u64) -> io::Result<Self> {
        region.read_le_u16(offset)
    }

    fn write(self, region: &dyn PciRegion, offset: u64) -> io::Result<()> {
        region.write_le_u16(offset, self)
    }
}

impl Sealed for u32 {}
impl PciRegisterValue for u32 {
    fn read(region: &dyn PciRegion, offset: u64) -> io::Result<Self> {
        region.read_le_u32(offset)
    }

    fn write(self, region: &dyn PciRegion, offset: u64) -> io::Result<()> {
        region.write_le_u32(offset, self)
    }
}

fn print_debug_hex<T: Debug + LowerHex>(
    value: io::Result<T>,
    f: &mut fmt::Formatter,
) -> fmt::Result {
    if let Ok(v) = value {
        // Avoid newlines around short values, and print in hex since that is usually more useful.
        write!(f, "Ok({:#x})", v)
    } else {
        Debug::fmt(&value, f)
    }
}

fn print_debug_bool(value: io::Result<bool>, f: &mut fmt::Formatter) -> fmt::Result {
    if let Ok(v) = value {
        // Avoid newlines around short values.
        write!(f, "Ok({})", v)
    } else {
        Debug::fmt(&value, f)
    }
}

/* ---------------------------------------------------------------------------------------------- */

// READ-ONLY REGISTERS

/// An 8-bit, 16-bit, or 32-bit PCI register that is read-only.
#[derive(Clone, Copy)]
pub struct PciRegisterRo<'a, T: PciRegisterValue> {
    region: &'a dyn PciRegion,
    offset: u64,
    phantom: PhantomData<T>,
}

impl<'a, T: PciRegisterValue> PciRegisterRo<'a, T> {
    /// Read the field.
    pub fn read(&self) -> io::Result<T> {
        T::read(self.region, self.offset)
    }
}

impl<'a, T: PciRegisterValue> BackedByPciSubregion<'a> for PciRegisterRo<'a, T> {
    fn backed_by(as_subregion: impl AsPciSubregion<'a>) -> Self {
        let subregion = as_subregion.as_subregion();
        PciRegisterRo {
            region: subregion.underlying_region(),
            offset: subregion.offset_in_underlying_region(),
            phantom: PhantomData,
        }
    }
}

impl<T: PciRegisterValue> Debug for PciRegisterRo<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_hex(self.read(), f)
    }
}

// READ-WRITE REGISTERS

/// An 8-bit, 16-bit, or 32-bit PCI register that is read-write.
#[derive(Clone, Copy)]
pub struct PciRegisterRw<'a, T: PciRegisterValue> {
    region: &'a dyn PciRegion,
    offset: u64,
    phantom: PhantomData<T>,
}

impl<'a, T: PciRegisterValue> PciRegisterRw<'a, T> {
    /// Read the field.
    pub fn read(&self) -> io::Result<T> {
        T::read(self.region, self.offset)
    }

    /// Write the field.
    pub fn write(&self, value: T) -> io::Result<()> {
        value.write(self.region, self.offset)
    }
}

impl<'a, T: PciRegisterValue> BackedByPciSubregion<'a> for PciRegisterRw<'a, T> {
    fn backed_by(as_subregion: impl AsPciSubregion<'a>) -> Self {
        let subregion = as_subregion.as_subregion();
        PciRegisterRw {
            region: subregion.underlying_region(),
            offset: subregion.offset_in_underlying_region(),
            phantom: PhantomData,
        }
    }
}

impl<T: PciRegisterValue> Debug for PciRegisterRw<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_hex(self.read(), f)
    }
}

/* ---------------------------------------------------------------------------------------------- */

// BIT FIELD TRAITS

/// A PCI register of type that is a bit field and may be read.
pub trait PciBitFieldReadable: Debug {
    /// The type of the register's value.
    type Type: PciRegisterValue;

    /// Read the entire bit field at once.
    fn read(&self) -> io::Result<Self::Type>;
}

/// A PCI register of type that is a bit field and may be written.
pub trait PciBitFieldWriteable: PciBitFieldReadable {
    /// Write mask for the register.
    ///
    /// One wants to alter the value of only some bits of the register. However, the register may
    /// only be read/written in its entirety. Further, some of the bits in the register may need to
    /// be written with the value 0 in order not to change their actual state in the device. This
    /// write mask has those bits set to 0, and the others set to 1. Thus, to alter the value of
    /// only some bits of the register, this must be done:
    ///
    /// - Read the register into `x`;
    /// - Apply the write mask to `x`, _i.e._, `let y = x & WRITE_MASK`;
    /// - Modify `y` as needed;
    /// - Write the resulting value into the register.
    ///
    /// Of course, you most likely can just use the member functions that this type provides to
    /// manipulate individual parts of the register, but sometimes you may need to do these steps by
    /// yourself, _e.g._, to atomically alter several parts of the register at once.
    const WRITE_MASK: Self::Type;

    /// Write the entire bit field at once.
    fn write(&self, value: Self::Type) -> io::Result<()>;
}

// TODO: Probably make these below use a PciSubregion, so they can check if they are reading/writing
// past the end of the region.

// READ-ONLY BIT SEQUENCES

/// A read-only sequence of bits that is part of a PCI register.
#[derive(Clone, Copy)]
pub struct PciBitsReadOnly<'a, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue,
{
    region: &'a dyn PciRegion,
    offset: u64,
    mask: T,
    shift: u8,
    phantom: PhantomData<U>,
}

impl<'a, T, U> PciBitsReadOnly<'a, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue,
{
    pub fn backed_by(region: &'a dyn PciRegion, offset: u64, mask: T, shift: u8) -> Self {
        PciBitsReadOnly {
            region,
            offset,
            mask,
            shift,
            phantom: PhantomData,
        }
    }

    /// Read the bit sequence.
    ///
    /// This reads the entire register and then masks and shifts the part we're interested in.
    pub fn read(&self) -> io::Result<U> {
        let value = (T::read(self.region, self.offset)? & self.mask) >> self.shift.into();
        // TODO: Ensure at compile time that this can't fail.
        Ok(value.try_into().unwrap())
    }
}

impl<T, U> Debug for PciBitsReadOnly<'_, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_hex(self.read(), f)
    }
}

// READ-WRITE BIT SEQUENCES

/// A read-write sequence of bits that is part of a PCI register.
#[derive(Clone, Copy)]
pub struct PciBitsReadWrite<'a, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue + Into<T>,
{
    region: &'a dyn PciRegion,
    offset: u64,
    mask: T,
    shift: u8,
    write_mask: T, // must 'and' with this after reading but before altering the bits
    phantom: PhantomData<U>,
}

impl<'a, T, U> PciBitsReadWrite<'a, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue + Into<T>,
{
    pub fn backed_by(
        region: &'a dyn PciRegion,
        offset: u64,
        mask: T,
        shift: u8,
        write_mask: T,
    ) -> Self {
        PciBitsReadWrite {
            region,
            offset,
            mask,
            shift,
            write_mask,
            phantom: PhantomData,
        }
    }

    /// Read the bit sequence.
    ///
    /// This reads the entire register and then masks and shifts the part we're interested in.
    pub fn read(&self) -> io::Result<U> {
        let value = (T::read(self.region, self.offset)? & self.mask) >> self.shift.into();
        // TODO: Ensure at compile time that this can't fail.
        Ok(value.try_into().unwrap())
    }

    /// Write the bit sequence.
    ///
    /// This shifts the value and makes sure to not affect any other bits in the underlying
    /// register.
    pub fn write(&self, value: U) -> io::Result<()> {
        let shifted = value.into() << self.shift.into();

        if shifted >> self.shift.into() != value.into() || shifted & !self.mask != T::zero() {
            return Err(io::Error::new(ErrorKind::InvalidInput, "Value is too big"));
        }

        let to_write = (T::read(self.region, self.offset)? & self.write_mask) | shifted;
        to_write.write(self.region, self.offset)
    }
}

impl<T, U> Debug for PciBitsReadWrite<'_, T, U>
where
    T: PciRegisterValue + TryInto<U>,
    T::Error: Debug,
    U: PciRegisterValue + Into<T>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_hex(self.read(), f)
    }
}

// READ-ONLY INDIVIDUAL BITS

/// A read-only single bit that is part of a PCI register.
#[derive(Clone, Copy)]
pub struct PciBitReadOnly<'a, T: PciRegisterValue> {
    region: &'a dyn PciRegion,
    offset: u64,
    mask: T,
}

impl<'a, T: PciRegisterValue> PciBitReadOnly<'a, T> {
    pub fn backed_by(region: &'a dyn PciRegion, offset: u64, mask: T) -> Self {
        PciBitReadOnly {
            region,
            offset,
            mask,
        }
    }

    /// Read the bit.
    ///
    /// This reads the entire register and then checks the bit we're interested in.
    pub fn read(&self) -> io::Result<bool> {
        Ok(T::read(self.region, self.offset)? & self.mask != T::zero())
    }
}

impl<T: PciRegisterValue> Debug for PciBitReadOnly<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_bool(self.read(), f)
    }
}

// READ-WRITE INDIVIDUAL BITS

/// A read-write single bit that is part of a PCI register.
#[derive(Clone, Copy)]
pub struct PciBitReadWrite<'a, T: PciRegisterValue> {
    region: &'a dyn PciRegion,
    offset: u64,
    mask: T,
    write_mask: T, // must 'and' with this after reading but before altering the bits
}

impl<'a, T: PciRegisterValue> PciBitReadWrite<'a, T> {
    pub fn backed_by(region: &'a dyn PciRegion, offset: u64, mask: T, write_mask: T) -> Self {
        PciBitReadWrite {
            region,
            offset,
            mask,
            write_mask,
        }
    }

    /// Read the bit.
    ///
    /// This reads the entire register and then checks the bit we're interested in.
    pub fn read(&self) -> io::Result<bool> {
        Ok(T::read(self.region, self.offset)? & self.mask != T::zero())
    }

    /// Write the bit.
    ///
    /// This makes sure to not affect any other bits in the underlying register.
    pub fn write(&self, value: bool) -> io::Result<()> {
        let old = T::read(self.region, self.offset)? & self.write_mask;

        let new = if value {
            old | self.mask
        } else {
            old & !self.mask
        };

        new.write(self.region, self.offset)
    }
}

impl<T: PciRegisterValue> Debug for PciBitReadWrite<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_bool(self.read(), f)
    }
}

// READ-CLEAR INDIVIDUAL BITS

/// A read-clear (RW1C in the spec) single bit that is part of a PCI register.
#[derive(Clone, Copy)]
pub struct PciBitReadClear<'a, T: PciRegisterValue> {
    rw: PciBitReadWrite<'a, T>,
}

impl<'a, T: PciRegisterValue> PciBitReadClear<'a, T> {
    pub fn backed_by(region: &'a dyn PciRegion, offset: u64, mask: T, write_mask: T) -> Self {
        PciBitReadClear {
            rw: PciBitReadWrite {
                region,
                offset,
                mask,
                write_mask,
            },
        }
    }

    /// Read the bit.
    ///
    /// This reads the entire register and then checks the bit we're interested in.
    pub fn read(&self) -> io::Result<bool> {
        self.rw.read()
    }

    /// Clear the bit (_i.e._, set it to 0).
    ///
    /// This makes sure to not affect any other bits in the underlying register.
    pub fn clear(&self) -> io::Result<()> {
        self.rw.write(true)
    }
}

impl<T: PciRegisterValue> Debug for PciBitReadClear<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        print_debug_bool(self.read(), f)
    }
}

/* ---------------------------------------------------------------------------------------------- */