1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use core::fmt;
pub mod gen32;
use rand_core::{Error, le, RngCore, SeedableRng};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
const MULTIPLIER: u64 = 0xfeb3_4465_7c0a_f413;
#[derive(Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Mwc256XXA64 {
x1: u64,
x2: u64,
x3: u64,
c: u64,
}
impl Mwc256XXA64 {
pub fn new(k1: u64, k2: u64) -> Self {
Mwc256XXA64::from_state_incr(k1, k2, 0xcafef00dd15ea5e5, 0x14057B7EF767814F)
}
#[inline]
fn from_state_incr(x1: u64, x2: u64, x3: u64, c: u64) -> Self {
let mut pcg = Mwc256XXA64 { x1, x2, x3, c };
pcg.gen6();
pcg
}
#[inline]
fn gen6(&mut self) -> [u64; 6] {
let mut result = [0; 6];
let (low, hi) = multiply(self.x3);
result[0] = permute(self.x1, self.x2, self.x3, self.c, low, hi);
let (r1, b) = low.overflowing_add(self.c);
let c = hi.wrapping_add(b as u64);
let (low, hi) = multiply(self.x2);
result[1] = permute(r1, self.x1, self.x2, c, low, hi);
let (r2, b) = low.overflowing_add(c);
let c = hi.wrapping_add(b as u64);
let (low, hi) = multiply(self.x1);
result[2] = permute(r2, r1, self.x1, c, low, hi);
let (r3, b) = low.overflowing_add(c);
let c = hi.wrapping_add(b as u64);
let (low, hi) = multiply(r1);
result[3] = permute(r3, r2, r1, c, low, hi);
let (r1, b) = low.overflowing_add(c);
let c = hi.wrapping_add(b as u64);
let (low, hi) = multiply(r2);
result[4] = permute(r1, r3, r2, c, low, hi);
let (r2, b) = low.overflowing_add(c);
let c = hi.wrapping_add(b as u64);
let (low, hi) = multiply(r3);
result[5] = permute(r2, r1, r3, c, low, hi);
let (r3, b) = low.overflowing_add(c);
let c = hi.wrapping_add(b as u64);
self.c = c;
self.x1 = r3;
self.x2 = r2;
self.x3 = r1;
return result;
}
#[inline]
fn step(&mut self) -> u64 {
let (low, hi) = multiply(self.x3);
let result = permute(self.x1, self.x2, self.x3, self.c, low, hi);
let (x1, b) = low.overflowing_add(self.c);
self.x3 = self.x2;
self.x2 = self.x1;
self.x1 = x1;
self.c = hi.wrapping_add(b as u64);
result
}
}
#[inline(always)]
fn multiply(val: u64) -> (u64, u64) {
let t = (val as u128).wrapping_mul(MULTIPLIER as u128);
return (t as u64, (t >> 64) as u64);
}
#[inline(always)]
fn permute(x1: u64, x2: u64, x3: u64, _c: u64, _low: u64, hi: u64) -> u64 {
(x3 ^ x2).wrapping_add(x1 ^ hi)
}
impl fmt::Debug for Mwc256XXA64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Mwc256XXA64 {{}}")
}
}
impl SeedableRng for Mwc256XXA64 {
type Seed = [u8; 32];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 4];
le::read_u64_into(&seed, &mut seed_u64);
let c = (seed_u64[0] & 0x3ffffffffffffff8) | 5;
let x3 = (seed_u64[3] << 2) | 1;
Mwc256XXA64::from_state_incr(seed_u64[1], seed_u64[2], x3, c)
}
}
impl RngCore for Mwc256XXA64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.step()
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut dest_chunks = dest.chunks_exact_mut(6 * 8);
for mut dest_chunk in &mut dest_chunks {
for &num in self.gen6().iter() {
let (l, r) = dest_chunk.split_at_mut(8);
l.copy_from_slice(&num.to_le_bytes());
dest_chunk = r;
}
}
for dest_chunk in dest_chunks.into_remainder().chunks_mut(8) {
dest_chunk.copy_from_slice(&self.step().to_le_bytes()[..dest_chunk.len()]);
}
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}