1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
use std::cell::RefCell;
use std::collections::HashMap;
use std::ops::Mul;
use std::rc::Rc;
use kurbo::{Affine, Point};
use pax_properties_coproduct::PropertiesCoproduct;
use pax_runtime_api::{Axis, CommonProperties, Transform2D};
use piet::{Color, StrokeStyle};
use piet_common::RenderContext;
use pax_runtime_api::{ArgsScroll, Layer, Size};
use crate::{HandlerRegistry, InstanceRegistry, RenderTreeContext};
use pax_runtime_api::PropertyInstance;
/// Type aliases to make it easier to work with nested Rcs and
/// RefCells for rendernodes.
pub type RenderNodePtr<R> = Rc<RefCell<dyn RenderNode<R>>>;
pub type RenderNodePtrList<R> = Rc<RefCell<Vec<RenderNodePtr<R>>>>;
pub struct ScrollerArgs {
pub size_inner_pane: [Box<dyn PropertyInstance<f64>>; 2],
pub axes_enabled: [Box<dyn PropertyInstance<bool>>; 2],
}
pub struct InstantiationArgs<R: 'static + RenderContext> {
pub common_properties: CommonProperties,
pub properties: PropertiesCoproduct,
pub handler_registry: Option<Rc<RefCell<HandlerRegistry<R>>>>,
pub instance_registry: Rc<RefCell<InstanceRegistry<R>>>,
pub children: Option<RenderNodePtrList<R>>,
pub component_template: Option<RenderNodePtrList<R>>,
pub scroller_args: Option<ScrollerArgs>,
/// used by Slot
pub slot_index: Option<Box<dyn PropertyInstance<pax_runtime_api::Numeric>>>,
///used by Repeat — the _vec and _range variants are modal, describing whether the source
///is encoded as a Vec<T> or as a Range<...>
pub repeat_source_expression_vec:
Option<Box<dyn PropertyInstance<Vec<Rc<PropertiesCoproduct>>>>>,
pub repeat_source_expression_range: Option<Box<dyn PropertyInstance<std::ops::Range<isize>>>>,
///used by Conditional
pub conditional_boolean_expression: Option<Box<dyn PropertyInstance<bool>>>,
///used by Component instances, specifically to unwrap type-specific PropertiesCoproducts
///and recurse into descendant property computation
pub compute_properties_fn:
Option<Box<dyn FnMut(Rc<RefCell<PropertiesCoproduct>>, &mut RenderTreeContext<R>)>>,
}
#[derive(Copy, Clone)]
pub struct Point2D {
x: f64,
y: f64,
}
impl Point2D {
fn subtract(self, other: Point2D) -> Self {
Self {
x: self.x - other.x,
y: self.y - other.y,
}
}
fn dot(self, other: Point2D) -> f64 {
self.x * other.x + self.y * other.y
}
fn normal(self) -> Self {
Self {
x: -self.y,
y: self.x,
}
}
fn project_onto(self, axis: Point2D) -> f64 {
let dot_product = self.dot(axis);
dot_product / (axis.x.powi(2) + axis.y.powi(2))
}
}
impl Mul<Point2D> for Affine {
type Output = Point2D;
#[inline]
fn mul(self, other: Point2D) -> Point2D {
let coeffs = self.as_coeffs();
Point2D {
x: coeffs[0] * other.x + coeffs[2] * other.y + coeffs[4],
y: coeffs[1] * other.x + coeffs[3] * other.y + coeffs[5],
}
}
}
/// Stores the computed transform and the pre-transform bounding box (where the
/// other corner is the origin). Useful for ray-casting, along with
#[derive(Clone)]
pub struct TransformAndBounds {
pub transform: Affine,
pub bounds: (f64, f64),
pub clipping_bounds: Option<(f64, f64)>,
}
impl TransformAndBounds {
pub fn corners(&self) -> [Point2D; 4] {
let width = self.bounds.0;
let height = self.bounds.1;
let top_left = self.transform * Point2D { x: 0.0, y: 0.0 };
let top_right = self.transform * Point2D { x: width, y: 0.0 };
let bottom_left = self.transform * Point2D { x: 0.0, y: height };
let bottom_right = self.transform
* Point2D {
x: width,
y: height,
};
[top_left, top_right, bottom_right, bottom_left]
}
//Applies the separating axis theorem to determine whether two `TransformAndBounds` intersect.
pub fn intersects(&self, other: &Self) -> bool {
let corners_self = self.corners();
let corners_other = other.corners();
for i in 0..2 {
let axis = corners_self[i].subtract(corners_self[(i + 1) % 4]).normal();
let self_projections: Vec<_> =
corners_self.iter().map(|&p| p.project_onto(axis)).collect();
let other_projections: Vec<_> = corners_other
.iter()
.map(|&p| p.project_onto(axis))
.collect();
if self_projections
.iter()
.cloned()
.max_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap()
< other_projections
.iter()
.cloned()
.min_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap()
|| other_projections
.iter()
.cloned()
.max_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap()
< self_projections
.iter()
.cloned()
.min_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap()
{
// By the separating axis theorem, non-overlap of projections on _any one_ of the axis-normals proves that these polygons do not intersect.
return false;
}
}
true
}
}
/// The base trait for a RenderNode, representing any node that can
/// be rendered by the engine.
/// T: a member of PropertiesCoproduct, representing the type of the set of properites
/// associated with this node.
pub trait RenderNode<R: 'static + RenderContext> {
fn instantiate(args: InstantiationArgs<R>) -> Rc<RefCell<Self>>
where
Self: Sized;
/// Return the list of nodes that are children of this node at render-time.
/// Note that "children" is somewhat overloaded, hence "rendering_children" here.
/// "Children" may indicate a.) a template root, b.) adoptees, c.) primitive children
/// Each RenderNode is responsible for determining at render-time which of these concepts
/// to pass to the engine for rendering, and that distinction occurs inside `get_rendering_children`
fn get_rendering_children(&self) -> RenderNodePtrList<R>;
/// Consumes the children of this node at render-time that should be removed.
/// This occurs when they were mounted in some previous frame but now need to be removed after a property change
/// This function resets this list once returned
fn pop_cleanup_children(&mut self) -> RenderNodePtrList<R> {
Rc::new(RefCell::new(vec![]))
}
///Determines whether the provided ray, orthogonal to the view plane,
///intersects this rendernode. `tab` must also be passed because these are specific
///to a RepeatExpandedNode
fn ray_cast_test(&self, ray: &(f64, f64), tab: &TransformAndBounds) -> bool {
//short-circuit fail for Group and other size-None elements.
//This doesn't preclude event handlers on Groups and size-None elements --
//it just requires the event to "bubble". otherwise, `Component A > Component B` will
//never allow events to be bound to `B` — they will be vacuously intercepted by `A`
if let None = self.get_size() {
return false;
}
let inverted_transform = tab.transform.inverse();
let transformed_ray = inverted_transform * Point { x: ray.0, y: ray.1 };
let relevant_bounds = match tab.clipping_bounds {
None => tab.bounds,
Some(cp) => cp,
};
//Default implementation: rectilinear bounding hull
transformed_ray.x > 0.0
&& transformed_ray.y > 0.0
&& transformed_ray.x < relevant_bounds.0
&& transformed_ray.y < relevant_bounds.1
}
fn get_common_properties(&self) -> &CommonProperties;
fn get_handler_registry(&self) -> Option<Rc<RefCell<HandlerRegistry<R>>>> {
None //default no-op
}
/// Used at least by ray-casting; only nodes that clip content (and thus should
/// not allow outside content to respond to ray-casting) should return true
fn get_clipping_bounds(&self) -> Option<(Size, Size)> {
None
}
/// Returns the size of this node, or `None` if this node
/// doesn't have a size (e.g. `Group`)
fn get_size(&self) -> Option<(Size, Size)> {
Some((
self.get_common_properties()
.width
.as_ref()
.borrow()
.get()
.clone(),
self.get_common_properties()
.height
.as_ref()
.borrow()
.get()
.clone(),
))
}
/// Returns unique integer ID of this RenderNode instance. Note that
/// individual rendered elements may share an instance_id, for example
/// inside of `Repeat`. See also `RenderTreeContext::get_id_chain`, which enables globally
/// unique node addressing in the context of an in-progress render tree traversal.
fn get_instance_id(&self) -> u32;
/// Used for exotic tree traversals, e.g. for `Stacker` > `Repeat` > `Rectangle`
/// where the repeated `Rectangle`s need to be be considered direct children of `Stacker`.
/// `Repeat` overrides `should_flatten` to return true, which `Engine` interprets to mean "ignore this
/// node and consume its children" during traversal.
///
/// This may also be useful as a check during slot -> adoptee
/// searching via stackframes — currently slots will recurse
/// up the stackframe looking for adoptees, but it may be the case that
/// checking should_flatten and NOT recursing is better behavior. TBD
/// as more use-cases are vetted.
fn should_flatten(&self) -> bool {
false
}
/// Returns the size of this node in pixels, requiring
/// parent bounds for calculation of `Percent` values
fn compute_size_within_bounds(&self, bounds: (f64, f64)) -> (f64, f64) {
match self.get_size() {
None => bounds,
Some(size_raw) => (
size_raw.0.evaluate(bounds, Axis::X),
size_raw.1.evaluate(bounds, Axis::Y),
),
}
}
/// Returns the clipping bounds of this node in pixels, requiring
/// parent bounds for calculation of `Percent` values
fn compute_clipping_within_bounds(&self, bounds: (f64, f64)) -> (f64, f64) {
match self.get_clipping_bounds() {
None => bounds,
Some(size_raw) => (
size_raw.0.evaluate(bounds, Axis::X),
size_raw.1.evaluate(bounds, Axis::Y),
),
}
}
/// First lifecycle method during each render loop, used to compute
/// properties in advance of rendering.
/// Occurs in a pre-order traversal of the render tree.
fn compute_properties(&mut self, _rtc: &mut RenderTreeContext<R>) {
//no-op default implementation
}
/// Used by elements that need to communicate across native rendering bridge (for example: Text, Clipping masks, scroll containers)
/// Called by engine after `compute_properties`, passed calculated size and transform matrix coefficients for convenience
/// Expected to induce side-effects (if appropriate) via enqueueing messages to the native message queue
///
/// An implementor of `compute_native_patches` is responsible for determining which properties if any have changed
/// (e.g. by keeping a local patch object as a cache of last known values.)
fn compute_native_patches(
&mut self,
_rtc: &mut RenderTreeContext<R>,
_computed_size: (f64, f64),
_transform_coeffs: Vec<f64>,
_z_index: u32,
_subtree_depth: u32,
) {
//no-op default implementation
}
/// Second lifecycle method during each render loop, occurs AFTER
/// properties have been computed, but BEFORE rendering
/// Example use-case: perform side-effects to the drawing contexts.
/// This is how [`Frame`] performs clipping, for example.
/// Occurs in a pre-order traversal of the render tree.
fn handle_will_render(
&mut self,
_rtc: &mut RenderTreeContext<R>,
_rcs: &mut HashMap<String, R>,
) {
//no-op default implementation
}
/// Third lifecycle method during each render loop, occurs
/// AFTER all descendents have been rendered.
/// Occurs in a post-order traversal of the render tree. Most primitives
/// are expected to draw their contents to the rendering context during this event.
fn handle_render(&mut self, _rtc: &mut RenderTreeContext<R>, _rc: &mut R) {
//no-op default implementation
}
/// Fourth and final lifecycle method during each render loop, occurs
/// AFTER all descendents have been rendered AND the current node has been rendered.
/// Useful for clean-up, e.g. this is where `Frame` cleans up the drawing contexts
/// to stop clipping.
/// Occurs in a post-order traversal of the render tree.
fn handle_did_render(
&mut self,
_rtc: &mut RenderTreeContext<R>,
_rcs: &mut HashMap<String, R>,
) {
//no-op default implementation
}
/// Fires during the tick when a node is first attached to the render tree. For example,
/// this event fires by all nodes on the global first tick, and by all nodes in a subtree
/// when a `Conditional` subsequently turns on a subtree (i.e. when the `Conditional`s criterion becomes `true` after being `false` through the end of at least 1 frame.)
/// A use-case: send a message to native renderers that a `Text` element should be rendered and tracked
fn handle_did_mount(&mut self, _rtc: &mut RenderTreeContext<R>, _z_index: u32) {
//no-op default implementation
}
/// Fires during element unmount, when an element is about to be removed from the render tree (e.g. by a `Conditional`)
/// A use-case: send a message to native renderers that a `Text` element should be removed
fn handle_will_unmount(&mut self, _rtc: &mut RenderTreeContext<R>) {
//no-op default implementation
}
/// Returns the layer type (`Layer::Native` or `Layer::Canvas`) for this RenderNode.
/// Default is `Layer::Canvas`, and must be overwritten for native rendering
fn get_layer_type(&mut self) -> Layer {
Layer::Canvas
}
/// Invoked by event interrupts to pass scroll information to render node
fn handle_scroll(&mut self, _args_scroll: ArgsScroll) {
//no-op default implementation
}
/// Returns the scroll offset from a Scroller component
/// Used by the engine to transform its children
fn get_scroll_offset(&mut self) -> (f64, f64) {
(0.0, 0.0)
}
}
pub trait LifecycleNode {}
pub trait ComputableTransform {
fn compute_transform2d_matrix(
&self,
node_size: (f64, f64),
container_bounds: (f64, f64),
) -> Affine;
}
impl ComputableTransform for Transform2D {
//Distinction of note: scale, translate, rotate, anchor, and align are all AUTHOR-TIME properties
// node_size and container_bounds are (computed) RUNTIME properties
//Returns (Base affine transform, align component)
fn compute_transform2d_matrix(
&self,
node_size: (f64, f64),
container_bounds: (f64, f64),
) -> Affine {
//Three broad strokes:
// a.) compute anchor
// b.) decompose "vanilla" affine matrix
// c.) combine with previous transform chain (assembled via multiplication of two Transform2Ds, e.g. in PAXEL)
// Compute anchor
let anchor_transform = match &self.anchor {
Some(anchor) => Affine::translate((
match anchor[0] {
Size::Pixels(pix) => -pix.get_as_float(),
Size::Percent(per) => -node_size.0 * (per / 100.0),
Size::Combined(pix, per) => {
-pix.get_as_float() + (-node_size.0 * (per / 100.0))
}
},
match anchor[1] {
Size::Pixels(pix) => -pix.get_as_float(),
Size::Percent(per) => -node_size.1 * (per / 100.0),
Size::Combined(pix, per) => {
-pix.get_as_float() + (-node_size.0 * (per / 100.0))
}
},
)),
//No anchor applied: treat as 0,0; identity matrix
None => Affine::default(),
};
//decompose vanilla affine matrix and pack into `Affine`
let (scale_x, scale_y) = if let Some(scale) = self.scale {
(scale[0].expect_percent(), scale[1].expect_percent())
} else {
(1.0, 1.0)
};
let (skew_x, skew_y) = if let Some(skew) = self.skew {
(skew[0], skew[1])
} else {
(0.0, 0.0)
};
let (translate_x, translate_y) = if let Some(translate) = &self.translate {
(
translate[0].evaluate(container_bounds, Axis::X),
translate[1].evaluate(container_bounds, Axis::Y),
)
} else {
(0.0, 0.0)
};
let rotate_rads = if let Some(rotate) = &self.rotate {
rotate.get_as_radians()
} else {
0.0
};
let cos_theta = rotate_rads.cos();
let sin_theta = rotate_rads.sin();
// Elements for a combined scale and rotation
let a = scale_x * cos_theta - scale_y * skew_x * sin_theta;
let b = scale_x * sin_theta + scale_y * skew_x * cos_theta;
let c = -scale_y * sin_theta + scale_x * skew_y * cos_theta;
let d = scale_y * cos_theta + scale_x * skew_y * sin_theta;
// Translation
let e = translate_x;
let f = translate_y;
let coeffs = [a, b, c, d, e, f];
let transform = Affine::new(coeffs);
// Compute and combine previous_transform
let previous_transform = match &self.previous {
Some(previous) => (*previous).compute_transform2d_matrix(node_size, container_bounds),
None => Affine::default(),
};
transform * anchor_transform * previous_transform
}
}
/// Represents the outer stroke of a drawable element
pub struct StrokeInstance {
pub color: Color,
pub width: f64,
pub style: StrokeStyle,
//FUTURE: stroke alignment, inner/outer/center?
}