1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
use std::fmt::{self, Display};
use std::ops::Mul;
use Pauli::{I, X, Y, Z};
use serde::{Serialize, Deserialize};

/// A single qubit Pauli operator without a phase.
///
/// These operators form a multiplicative group
/// and follow the usual commutation and anti-commutation relations.
///
/// # Example
///
/// ```
/// use pauli::{I, X, Y, Z};
///
/// assert_eq!(X * Y, Z);
/// assert!(X.commutes_with(I));
/// assert!(Y.anticommutes_with(Z));
/// ```
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, Serialize, Deserialize)]
pub enum Pauli {
    I,
    X,
    Y,
    Z,
}

impl Pauli {
    /// Checks if the operator anti-commutes with the other operator.
    ///
    /// # Example
    ///
    /// ```
    /// use pauli::{I, X, Y, Z};
    ///
    /// assert!(X.anticommutes_with(Y));
    /// assert!(Y.anticommutes_with(Z));
    /// assert!(Z.anticommutes_with(X));
    /// ```
    pub fn anticommutes_with(self, other: Self) -> bool {
        !self.commutes_with(other)
    }

    /// Checks if the operator commutes with the other operator.
    ///
    /// # Example
    ///
    /// ```
    /// use pauli::{I, X, Y, Z};
    ///
    /// assert!(I.commutes_with(X));
    /// assert!(Y.commutes_with(Y));
    /// assert!(Z.commutes_with(I));
    /// ```
    pub fn commutes_with(self, other: Self) -> bool {
        self == I || other == I || self == other
    }

    /// Checks if the operator is not the identity.
    pub fn is_non_trivial(self) -> bool {
        self != I
    }

    /// Checks if the operator is the identity.
    pub fn is_trivial(self) -> bool {
        self == I
    }
}

impl Mul<Pauli> for Pauli {
    type Output = Pauli;

    fn mul(self, other: Pauli) -> Pauli {
        match (self, other) {
            (I, p) => p,
            (p, q) if p == q => I,
            (X, Y) => Z,
            (Y, Z) => X,
            (Z, X) => Y,
            (p, q) => q * p,
        }
    }
}

impl Display for Pauli {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            I => write!(f, "I"),
            X => write!(f, "X"),
            Y => write!(f, "Y"),
            Z => write!(f, "Z"),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn commutations() {
        assert!(I.commutes_with(I));
        assert!(I.commutes_with(X));
        assert!(I.commutes_with(Y));
        assert!(I.commutes_with(Z));

        assert!(X.commutes_with(I));
        assert!(X.commutes_with(X));
        assert!(X.anticommutes_with(Y));
        assert!(X.anticommutes_with(Z));

        assert!(Y.commutes_with(I));
        assert!(Y.anticommutes_with(X));
        assert!(Y.commutes_with(Y));
        assert!(Y.anticommutes_with(Z));

        assert!(Z.commutes_with(I));
        assert!(Z.anticommutes_with(X));
        assert!(Z.anticommutes_with(Y));
        assert!(Z.commutes_with(Z));
    }

    #[test]
    fn multiplications() {
        assert_eq!(I * I, I);
        assert_eq!(I * X, X);
        assert_eq!(I * Y, Y);
        assert_eq!(I * Z, Z);

        assert_eq!(X * I, X);
        assert_eq!(X * X, I);
        assert_eq!(X * Y, Z);
        assert_eq!(X * Z, Y);

        assert_eq!(Y * I, Y);
        assert_eq!(Y * X, Z);
        assert_eq!(Y * Y, I);
        assert_eq!(Y * Z, X);

        assert_eq!(Z * I, Z);
        assert_eq!(Z * X, Y);
        assert_eq!(Z * Y, X);
        assert_eq!(Z * Z, I);
    }
}