patch_tracker/
patch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use image::imageops;
use image::GrayImage;
use nalgebra as na;
use std::ops::AddAssign;

use crate::image_utilities;

pub const PATTERN52_SIZE: usize = 52;
pub struct Pattern52 {
    pub valid: bool,
    pub mean: f32,
    pub pos: na::SVector<f32, 2>,
    pub data: [f32; PATTERN52_SIZE], // negative if the point is not valid
    pub h_se2_inv_j_se2_t: na::SMatrix<f32, 3, PATTERN52_SIZE>,
    pub pattern_scale_down: f32,
}
impl Pattern52 {
    pub const PATTERN_RAW: [[f32; 2]; PATTERN52_SIZE] = [
        [-3.0, 7.0],
        [-1.0, 7.0],
        [1.0, 7.0],
        [3.0, 7.0],
        [-5.0, 5.0],
        [-3.0, 5.0],
        [-1.0, 5.0],
        [1.0, 5.0],
        [3.0, 5.0],
        [5.0, 5.0],
        [-7.0, 3.0],
        [-5.0, 3.0],
        [-3.0, 3.0],
        [-1.0, 3.0],
        [1.0, 3.0],
        [3.0, 3.0],
        [5.0, 3.0],
        [7.0, 3.0],
        [-7.0, 1.0],
        [-5.0, 1.0],
        [-3.0, 1.0],
        [-1.0, 1.0],
        [1.0, 1.0],
        [3.0, 1.0],
        [5.0, 1.0],
        [7.0, 1.0],
        [-7.0, -1.0],
        [-5.0, -1.0],
        [-3.0, -1.0],
        [-1.0, -1.0],
        [1.0, -1.0],
        [3.0, -1.0],
        [5.0, -1.0],
        [7.0, -1.0],
        [-7.0, -3.0],
        [-5.0, -3.0],
        [-3.0, -3.0],
        [-1.0, -3.0],
        [1.0, -3.0],
        [3.0, -3.0],
        [5.0, -3.0],
        [7.0, -3.0],
        [-5.0, -5.0],
        [-3.0, -5.0],
        [-1.0, -5.0],
        [1.0, -5.0],
        [3.0, -5.0],
        [5.0, -5.0],
        [-3.0, -7.0],
        [-1.0, -7.0],
        [1.0, -7.0],
        [3.0, -7.0],
    ];

    // verified
    pub fn set_data_jac_se2(
        &mut self,
        greyscale_image: &GrayImage,
        j_se2: &mut na::SMatrix<f32, PATTERN52_SIZE, 3>,
    ) {
        let mut num_valid_points = 0;
        let mut sum: f32 = 0.0;
        let mut grad_sum_se2 = na::SVector::<f32, 3>::zeros();

        let mut jw_se2 = na::SMatrix::<f32, 2, 3>::identity();

        for (i, pattern_pos) in Self::PATTERN_RAW.into_iter().enumerate() {
            let p = self.pos
                + na::SVector::<f32, 2>::new(
                    pattern_pos[0] / self.pattern_scale_down,
                    pattern_pos[1] / self.pattern_scale_down,
                );
            jw_se2[(0, 2)] = -pattern_pos[1] / self.pattern_scale_down;
            jw_se2[(1, 2)] = pattern_pos[0] / self.pattern_scale_down;

            if image_utilities::inbound(greyscale_image, p.x, p.y, 2) {
                let val_grad = image_utilities::image_grad(greyscale_image, p.x, p.y);

                self.data[i] = val_grad[0];
                sum += val_grad[0];
                let re = val_grad.fixed_rows::<2>(1).transpose() * jw_se2;
                j_se2.set_row(i, &re);
                grad_sum_se2.add_assign(j_se2.fixed_rows::<1>(i).transpose());
                num_valid_points += 1;
            } else {
                self.data[i] = -1.0;
            }
        }

        self.mean = sum / num_valid_points as f32;

        let mean_inv = num_valid_points as f32 / sum;

        for i in 0..Self::PATTERN_RAW.len() {
            if self.data[i] >= 0.0 {
                let rhs = grad_sum_se2.transpose() * self.data[i] / sum;
                j_se2.fixed_rows_mut::<1>(i).add_assign(-rhs);
                self.data[i] *= mean_inv;
            } else {
                j_se2.set_row(i, &na::SMatrix::<f32, 1, 3>::zeros());
            }
        }
        *j_se2 *= mean_inv;
    }
    pub fn new(greyscale_image: &GrayImage, px: f32, py: f32) -> Pattern52 {
        let mut j_se2 = na::SMatrix::<f32, PATTERN52_SIZE, 3>::zeros();
        let mut p = Pattern52 {
            valid: false,
            mean: 1.0,
            pos: na::SVector::<f32, 2>::new(px, py),
            data: [0.0; PATTERN52_SIZE], // negative if the point is not valid
            h_se2_inv_j_se2_t: na::SMatrix::<f32, 3, 52>::zeros(),
            pattern_scale_down: 2.0,
        };
        p.set_data_jac_se2(greyscale_image, &mut j_se2);
        let h_se2 = j_se2.transpose() * j_se2;
        let mut h_se2_inv = na::SMatrix::<f32, 3, 3>::identity();

        if let Some(x) = h_se2.cholesky() {
            x.solve_mut(&mut h_se2_inv);
            p.h_se2_inv_j_se2_t = h_se2_inv * j_se2.transpose();

            // NOTE: while it's very unlikely we get a source patch with all black
            // pixels, since points are usually selected at corners, it doesn't cost
            // much to be safe here.

            // all-black patch cannot be normalized; will result in mean of "zero" and
            // H_se2_inv_J_se2_T will contain "NaN" and data will contain "inf"
            p.valid = p.mean > f32::EPSILON
                && p.h_se2_inv_j_se2_t.iter().all(|x| x.is_finite())
                && p.data.iter().all(|x| x.is_finite());
        }

        p
    }
    pub fn residual(
        &self,
        greyscale_image: &GrayImage,
        transformed_pattern: &na::SMatrix<f32, 2, PATTERN52_SIZE>,
    ) -> Option<na::SVector<f32, PATTERN52_SIZE>> {
        let mut sum: f32 = 0.0;
        let mut num_valid_points = 0;
        let mut residual = na::SVector::<f32, PATTERN52_SIZE>::zeros();
        for i in 0..PATTERN52_SIZE {
            if image_utilities::inbound(
                greyscale_image,
                transformed_pattern[(0, i)],
                transformed_pattern[(1, i)],
                2,
            ) {
                let p = imageops::interpolate_bilinear(
                    greyscale_image,
                    transformed_pattern[(0, i)],
                    transformed_pattern[(1, i)],
                );
                residual[i] = p.unwrap().0[0] as f32;
                sum += residual[i];
                num_valid_points += 1;
            } else {
                residual[i] = -1.0;
            }
        }

        // all-black patch cannot be normalized
        if sum < f32::EPSILON {
            return None;
        }

        let mut num_residuals = 0;

        for i in 0..PATTERN52_SIZE {
            if residual[i] >= 0.0 && self.data[i] >= 0.0 {
                let val = residual[i];
                residual[i] = num_valid_points as f32 * val / sum - self.data[i];
                num_residuals += 1;
            } else {
                residual[i] = 0.0;
            }
        }
        if num_residuals > PATTERN52_SIZE / 2 {
            Some(residual)
        } else {
            None
        }
    }
}