partial_enum/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#![feature(never_type)]
#![feature(exhaustive_patterns)]

//! A proc-macro for generating partial enums from a template enum. This partial
//! enum contains the same number of variants as the template but can disable a
//! subset of these variants at compile time. The goal is used specialize enum
//! with finer-grained variant set for each API.
//!
//! This is useful for handling errors. A common pattern is to define an enum
//! with all possible errors and use this for the entire API surface. Albeit
//! simple, this representation can fail to represent exact error scenarii by
//! allowing errors that can not happen.
//!
//! Take an API responsible for decoding messages from a socket.
//!
//! ```
//! # struct ConnectError;
//! # struct ReadError;
//! # struct DecodeError;
//! # struct Socket;
//! # struct Bytes;
//! # struct Message;
//! enum Error {
//!     Connect(ConnectError),
//!     Read(ReadError),
//!     Decode(DecodeError),
//! }
//!
//! fn connect() -> Result<Socket, Error> {
//!     Ok(Socket)
//! }
//!
//! fn read(sock: &mut Socket) -> Result<Bytes, Error> {
//!     Ok(Bytes)
//! }
//!
//! fn decode(bytes: Bytes) -> Result<Message, Error> {
//!     Err(Error::Decode(DecodeError))
//! }
//! ```
//!
//! The same error enum is used all over the place and exposes variants that do
//! not match the API: `decode` returns a `DecodeError` but nothing prevents
//! from returning a `ConnectError`. For such low-level API, we could substitute
//! `Error` by their matching error like `ConnectError` for `connect`. The
//! downside is that composing with such functions forces us to redefine custom
//! enums:
//!
//! ```
//! # struct ReadError;
//! # struct DecodeError;
//! # struct Socket;
//! # struct Bytes;
//! # struct Message;
//! enum NextMessageError {
//!     Read(ReadError),
//!     Decode(DecodeError),
//! }
//!
//! impl From<ReadError> for NextMessageError {
//!     fn from(err: ReadError) -> Self {
//!         NextMessageError::Read(err)
//!     }
//! }
//!
//! impl From<DecodeError> for NextMessageError {
//!     fn from(err: DecodeError) -> Self {
//!         NextMessageError::Decode(err)
//!     }
//! }
//!
//! fn read(sock: &mut Socket) -> Result<Bytes, ReadError> {
//!     Ok(Bytes)
//! }
//!
//! fn decode(bytes: Bytes) -> Result<Message, DecodeError> {
//!     Err(DecodeError)
//! }
//!
//! fn next_message(sock: &mut Socket) -> Result<Message, NextMessageError> {
//!     let payload = read(sock)?;
//!     let message = decode(payload)?;
//!     Ok(message)
//! }
//! ```
//!
//! This proc-macro intend to ease the composition of APIs that does not share
//! the exact same errors by generating a new generic enum where each variant
//! can be disabled one by one. We can then redefine our API like so:
//!
//! ```
//! # #![feature(never_type)]
//! # mod example {
//! # struct ConnectError;
//! # struct ReadError;
//! # struct DecodeError;
//! # struct Socket;
//! # struct Bytes;
//! # struct Message;
//! #[derive(partial_enum::Enum)]
//! enum Error {
//!     Connect(ConnectError),
//!     Read(ReadError),
//!     Decode(DecodeError),
//! }
//!
//! use partial::Error as E;
//!
//! fn connect() -> Result<Socket, E<ConnectError, !, !>> {
//!     Ok(Socket)
//! }
//!
//! fn read(sock: &mut Socket) -> Result<Bytes, E<!, ReadError, !>> {
//!     Ok(Bytes)
//! }
//!
//! fn decode(bytes: Bytes) -> Result<Message, E<!, !, DecodeError>> {
//!     Err(DecodeError)?
//! }
//!
//! fn next_message(sock: &mut Socket) -> Result<Message, E<!, ReadError, DecodeError>> {
//!     let payload = read(sock)?;
//!     let message = decode(payload)?;
//!     Ok(message)
//! }
//! # }
//! ```
//!
//! Notice that the `next_message` implementation is unaltered and the signature
//! clearly states that only `ReadError` and `DecodeError` can be returned. The
//! callee would never be able to match on `Error::Connect`. The `decode` implementation
//! uses the `?` operator to convert `DecodeError` to the partial enum. By using the
//! nightly feature `exhaustive_patterns`, the match statement does not even
//! need to write the disabled variants.
//!
//! ```
//! #![feature(exhaustive_patterns)]
//! # #![feature(never_type)]
//! # mod example {
//! # struct ConnectError;
//! # struct ReadError;
//! # struct DecodeError;
//! # struct Socket;
//! # struct Bytes;
//! # struct Message;
//! # #[derive(partial_enum::Enum)]
//! # enum Error {
//! #     Connect(ConnectError),
//! #     Read(ReadError),
//! #     Decode(DecodeError),
//! # }
//! # use partial::Error as E;
//! # fn connect() -> Result<Socket, E<ConnectError, !, !>> { Ok(Socket) }
//! # fn read(sock: &mut Socket) -> Result<Bytes, E<!, ReadError, !>> { Ok(Bytes) }
//! # fn decode(bytes: Bytes) -> Result<Message, E<!, !, DecodeError>> { Err(DecodeError)? }
//! # fn next_message(sock: &mut Socket) -> Result<Message, E<!, ReadError, DecodeError>> {
//! #     let payload = read(sock)?;
//! #     let message = decode(payload)?;
//! #     Ok(message)
//! # }
//! fn read_one_message() -> Result<Message, Error> {
//!     let mut socket = connect()?;
//!     match next_message(&mut socket) {
//!         Ok(msg) => Ok(msg),
//!         Err(E::Read(_)) => {
//!             // Retry...
//!             next_message(&mut socket).map_err(Error::from)
//!         }
//!         Err(E::Decode(err)) => Err(Error::Decode(err)),
//!     }
//! }
//! # }
//! ```
//!
//! # Rust version
//!
//! By default, the empty placeholder is the unit type `()`. The generated code
//! is compatible with the stable compiler. When the `never` feature is enabled,
//! the never type `!` is used instead. This requires a nightly compiler and the
//! nightly feature `#![feature(never_type)]`.

extern crate proc_macro;
use permutation::Permutations;
use proc_macro::TokenStream;
use proc_macro2::Span;
use quote::ToTokens;
use syn::{
    parse::{Parse, ParseStream},
    punctuated::Punctuated,
    spanned::Spanned,
    token::Paren,
    Fields, Ident, ItemEnum, Token, Type, TypeNever, TypeTuple, Visibility,
};

mod permutation;

/// Create the partial version of this enum.
///
/// This macro generates another enum of the same name, in a sub-module called
/// `partial`. This enum have the same variant identifiers as the original but
/// each associated type is now generic: an enum with `N` variants will have `N`
/// generic parameters. Each of those types can be instantiated with either the
/// original type or the never type `!`. No other type can be substituted. This
/// effectively creates an enum capable of disabling several variants. The enum
/// with no disabled variant is functionally equivalent to the original enum.
///
/// # Restrictions
///
/// Some restrictions are applied on the original enum for the macro to work:
///
/// * generic parameters are not supported
/// * named variant are not supported
/// * unit variant are not supported
/// * unnamed variants must only contain one type
///
/// # Example
///
/// The following `derive` statement:
///
/// ```
/// # #![feature(never_type)]
/// # mod example {
/// # struct Foo;
/// # struct Bar;
/// #[derive(partial_enum::Enum)]
/// enum Error {
///     Foo(Foo),
///     Bar(Bar),
/// }
/// # }
/// ```
///
/// will generate the following enum:
///
/// ```
/// mod partial {
///     enum Error<Foo, Bar> {
///         Foo(Foo),
///         Bar(Bar),
///     }
/// }
/// ```
///
/// where `Foo` can only be instantiated by `Foo` or `!` and `Bar` can only be
/// instantiated by `Bar` or `!`. `From` implementations are provided for all
/// valid morphisms: such conversion is valid if and only if, for each variant
/// type, we never go from a non-`!` type to the `!` type. This would otherwise
/// allow to forget this variant and pretend we can never match on it. The
/// compiler will rightfully complains that we're trying to instantiate an
/// uninhabited type.
#[proc_macro_derive(Enum)]
pub fn derive_error(item: TokenStream) -> TokenStream {
    let e: Enum = syn::parse_macro_input!(item as Enum);
    e.to_tokens().to_token_stream().into()
}

struct Enum(PartialEnum);

#[derive(Clone)]
struct PartialEnum {
    vis: Visibility,
    ident: Ident,
    variants: Vec<Variant>,
}

#[derive(Clone)]
struct Variant {
    ident: Ident,
    typ: Type,
}

impl Parse for Enum {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let enum_: ItemEnum = input.parse()?;
        if !enum_.generics.params.is_empty() {
            return Err(syn::Error::new(
                enum_.span(),
                "generic parameters are not supported",
            ));
        }

        let mut variants = vec![];
        for variant in enum_.variants.into_iter() {
            match variant.fields {
                Fields::Named(_) => {
                    return Err(syn::Error::new(
                        variant.fields.span(),
                        "named field is not supported",
                    ))
                }
                Fields::Unnamed(ref fields) if fields.unnamed.len() != 1 => {
                    return Err(syn::Error::new(
                        variant.fields.span(),
                        "only one field is supported",
                    ))
                }
                Fields::Unnamed(mut fields) => {
                    let field = fields.unnamed.pop().unwrap().into_value();
                    variants.push(Variant {
                        ident: variant.ident,
                        typ: field.ty,
                    });
                }
                Fields::Unit => {
                    return Err(syn::Error::new(
                        variant.fields.span(),
                        "unit field is not supported",
                    ))
                }
            }
        }

        Ok(Enum(PartialEnum {
            vis: enum_.vis,
            ident: enum_.ident,
            variants,
        }))
    }
}

impl Enum {
    fn to_tokens(&self) -> impl ToTokens {
        let enum_vis = &self.vis;
        let enum_name = quote::format_ident!("{}", self.ident);
        let empty_type = empty_token();

        let mut variant_generics = vec![];
        let mut variant_traits = vec![];
        let mut variant_idents = vec![];
        let mut variant_types = vec![];
        for variant in &self.variants {
            variant_generics.push(quote::format_ident!("{}", variant.ident));
            variant_traits.push(quote::format_ident!("{}Bound", variant.ident));
            variant_idents.push(&variant.ident);
            variant_types.push(&variant.typ);
        }

        let mut from_impls = vec![];
        for to in self.generate_all_partial_enums() {
            let to_type = to.enum_tokens();
            for from in self.generate_convertible_partial_enums(&to) {
                let from_type = from.enum_tokens();
                from_impls.push(quote::quote!(
                    impl From<#from_type> for #to_type {
                        fn from(value: #from_type) -> Self {
                            #[allow(unreachable_code)]
                            match value {
                                #(#enum_name::#variant_idents(x) => Self::#variant_idents(x),)*
                            }
                        }
                    }
                ));
            }
            from_impls.push(quote::quote!(
                impl From<#to_type> for super::#enum_name {
                    fn from(value: #to_type) -> Self {
                        #[allow(unreachable_code)]
                        match value {
                            #(#enum_name::#variant_idents(x) => Self::#variant_idents(x),)*
                        }
                    }
                }

            ));
        }

        // Implement conversion from a single variant type to any partial enum.
        // The only constrain is that the corresponding variant type cannot be
        // generic.
        for (idx, (variant_type, variant_ident)) in
            variant_types.iter().zip(&variant_idents).enumerate()
        {
            // Generate the destination type which is the generic version of the
            // partial enum with the concrete type as the `idx`th position.
            let (left, mut right) = variant_generics.split_at(idx);
            if let &[_, ref right_1 @ ..] = right {
                right = right_1;
            }
            let to_type = quote::quote!(#enum_name<#(#left,)* #variant_type, #(#right),*>);

            // The `idx`th generic parameter is removed because it is a concrete type for this conversion.
            let mut variant_generics = variant_generics.clone();
            let mut variant_traits = variant_traits.clone();
            variant_generics.remove(idx);
            variant_traits.remove(idx);

            from_impls.push(quote::quote!(
                impl<#(#variant_generics: #variant_traits),*> From<#variant_type> for #to_type {
                    fn from(value: #variant_type) -> Self {
                        Self::#variant_ident(value)
                    }
                }
            ));
        }

        quote::quote!(
            #enum_vis mod partial {
                #(use super::#variant_types;)*

                pub enum #enum_name<#(#variant_generics: #variant_traits),*> {
                    #(#variant_idents(#variant_generics)),*
                }

                #(
                pub trait #variant_traits {}
                impl #variant_traits for #variant_types {}
                impl #variant_traits for #empty_type {}
                )*

                #(#from_impls)*
            }
        )
    }

    fn generate_all_partial_enums(&self) -> Vec<PartialEnum> {
        let span = Span::call_site();
        let empty_type = if cfg!(feature = "never") {
            Type::Never(TypeNever {
                bang_token: Token![!]([span]),
            })
        } else {
            Type::Tuple(TypeTuple {
                paren_token: Paren { span },
                elems: Punctuated::new(),
            })
        };

        let mut enums = vec![];
        for perm in Permutations::new(self.variants.len()) {
            let mut enum_ = self.0.clone();
            for (i, is_concrete) in perm.enumerate() {
                if !is_concrete {
                    enum_.variants[i].typ = empty_type.clone();
                }
            }
            enums.push(enum_);
        }
        enums
    }

    fn generate_convertible_partial_enums(&self, to: &PartialEnum) -> Vec<PartialEnum> {
        self.generate_all_partial_enums()
            .into_iter()
            .filter(|from| from.is_convertible_to(to))
            .filter(|from| from != to)
            .collect()
    }
}

impl std::ops::Deref for Enum {
    type Target = PartialEnum;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl PartialEq for PartialEnum {
    fn eq(&self, other: &Self) -> bool {
        self.ident == other.ident && self.variants == other.variants
    }
}

impl PartialEnum {
    fn enum_tokens(&self) -> impl ToTokens {
        let enum_name = &self.ident;
        let variant_types = self.variants.iter().map(|variant| &variant.typ);
        quote::quote!(#enum_name<#(#variant_types,)*>)
    }

    fn is_convertible_to(&self, to: &PartialEnum) -> bool {
        assert_eq!(self.variants.len(), to.variants.len());
        for (from, to) in self.variants.iter().zip(&to.variants) {
            if from.is_concrete() && to.is_never() {
                return false;
            }
        }
        true
    }
}

impl Variant {
    fn is_never(&self) -> bool {
        matches!(self.typ, Type::Never(_))
    }

    fn is_concrete(&self) -> bool {
        !self.is_never()
    }
}

impl PartialEq for Variant {
    fn eq(&self, other: &Self) -> bool {
        self.ident == other.ident && self.is_concrete() == other.is_concrete()
    }
}

fn empty_token() -> impl ToTokens {
    if cfg!(feature = "never") {
        quote::quote!(!)
    } else {
        quote::quote!(())
    }
}