1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
//! Potentially partial-filled arrays.
//!
//! This crate provides a central new data type, similar to an [array]: the
//! [`PartialArray<N>`]. It is equivalent to an array, but the number of entries
//! might be anywhere from `0` to `N`. While this has similarities to a `Vec<T>`
//! keep in mind, that a [`PartialArray`] does not grow its memory: it always
//! takes up the memory for the fully array (with some additional counter) and
//! it cannot ever hold more than `N` elements. This means that its memory is
//! fully static and on the stack, making it usable from `#![no_std]` crates.
//!
//! ## Usages
//! This new data type is most likely to be used for collecting iterators into
//! arrays, when then length is not known, but has an upper bound, e.g.:
//! ```
//! # use partial_array::PartialArray;
//! /// Take the first 10 elements of an iterator, that match the condition.
//! ///
//! /// This can return less than 10 elements if the iterator has fewer than 10
//! /// items or there are less than 10 matching elements.
//! fn first_10_matching<T, I, F>(iter: I, check: F) -> PartialArray<T, 10>
//!     where I: IntoIterator<Item = T>,
//!           F: FnMut(&T) -> bool,
//! {
//!     iter.into_iter().filter(check).take(10).collect()
//! }
//! ```
//! Aside from this main usage, the [`PartialArray`] can be used like a normal
//! array, i.e. it can be used as a [slice], you can convert [`from`] arrays and
//! [`try_from`] slices. You can also iterate over the [`PartialArray`]s by
//! value.
//! ```
//! # use partial_array::PartialArray;
//! let array = PartialArray::from([42_u16; 4]);
//! assert_eq!(array.len(), 4);
//! assert_eq!(array[0], 42);
//! assert_eq!(array[3], 42);
//! assert_eq!(array[2..].len(), 2);
//! array.into_iter().map(|x| x + 4).for_each(|x| println!("{}", x));
//! ```
//! As [`PartialArray`] implements [`IntoIterator`], you can use it in a `for`
//! loop directly:
//! ```
//! # use partial_array::partial_array;
//! let array = partial_array![42_u16; 4];
//! for item in array {
//!     println!("{}", item);
//! }
//! ```
//! This crate also provides a [macro] to make creating partial arrays easier:
//! ```
//! # use partial_array::partial_array;
//! let array = partial_array![42, -13, 2];
//! ```
//!
//! ## Behavior on out-of-bounds accesses
//! This crate simply panics on an out-of-bound access, both if you using more
//! than `N` items or if you use a non-initialized entry:
//! ```should_panic
//! # use partial_array::PartialArray;
//! // partial array is only filled half, the last entry is uninitialized and
//! // therefore out of bounds:
//! let mut array: PartialArray<i32, 4> = (0..2).collect();
//! array[2] = 42; // panic!
//! ```
//! ```should_panic
//! # use partial_array::PartialArray;
//! // partial array has less space than the iterator has items:
//! let _array: PartialArray<i32, 4> = (0..42).collect(); // panic!
//! ```
//!
//! [array]: prim@array
//! [slice]: prim@slice
//! [`from`]: core::convert::From::from
//! [`try_from`]: core::convert::TryFrom::try_from
//! [macro]: crate::partial_array
#![cfg_attr(not(test), no_std)] // allow `std` for tests

pub mod iter;

#[cfg(test)]
mod tests;

use core::cmp::Ordering;
use core::fmt::{self, Debug, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::{FromIterator, IntoIterator};
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};

/// A potentially partially filled array.
///
/// This is an array, with a length of at most `N`, but any value below that is
/// possible. It is mainly used as a [`iter.collect()`][collect]
/// target via the [`FromIterator`] trait.
/// ```
/// # use partial_array::PartialArray;
/// fn first_five_authors<'a>(names: &mut [&'a str]) -> PartialArray<&'a str, 5> {
///     names.sort();
///     names.iter().copied().take(5).collect() // can be less than 5 items
/// }
///
/// // e.g. works with 5 or more items, less than 5 or even none at all
/// assert_eq!(
///     first_five_authors(&mut ["a", "c", "b", "d", "f", "e"]),
///     ["a", "b", "c", "d", "e"],
/// );
/// assert_eq!(
///     first_five_authors(&mut ["Bela Writa", "A Nauthor"]),
///     ["A Nauthor", "Bela Writa"],
/// );
/// assert_eq!(first_five_authors(&mut []), []);
/// ```
///
/// It [deref]s to a slice, so you can execute the usual slice operations on it.
///
/// See the [crate-level-documentation](crate) for more information on the
/// intended usage.
///
/// [deref]: core::ops::Deref::deref
/// [collect]: Iterator::collect
pub struct PartialArray<T, const N: usize> {
    /// The number of filled entries inside the array.
    ///
    /// Each item in `0..filled` must be initialized. Others may or may not.
    /// This must never be greater than `N`.
    filled: usize,
    /// The actual storage for the items.
    ///
    /// This is an array of [`MaybeUninit`] items to prevent initialization of
    /// non-filled elements. There is the invariant: `filled` elements must be
    /// initialized and allowed to read independently.
    array: [MaybeUninit<T>; N],
}
impl<T, const N: usize> Deref for PartialArray<T, N> {
    /// A [`PartialArray<T, _>`] dereferences to a [slice of `T`][slice].
    type Target = [T];

    /// Dereference to the slice of filled elements (potentially less than `N`).
    fn deref(&self) -> &Self::Target {
        let slice = &self.array[..self.filled];
        // SAFETY: the invariant is, that `0..self.filled` is initialized, so it
        // is no UB reading those. The transmute itself is safe, since
        // `MaybeUninit` is `#[rpr(transparent)]`.
        unsafe { mem::transmute(slice) }
    }
}
impl<T, const N: usize> DerefMut for PartialArray<T, N> {
    /// Dereference to the slice of filled elements (potentially less than `N`).
    fn deref_mut(&mut self) -> &mut Self::Target {
        let slice = &mut self.array[..self.filled];
        // SAFETY: the invariant is, that `0..self.filled` is initialized, so it
        // is no UB reading those. The transmute itself is safe, since
        // `MaybeUninit` is `#[rpr(transparent)]`.
        unsafe { mem::transmute(slice) }
    }
}
impl<T: Debug, const N: usize> Debug for PartialArray<T, N> {
    /// Debug-format the slice of filled elements (potentially less than `N`).
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        <[T] as Debug>::fmt(self, f)
    }
}
impl<T: PartialEq, const N: usize, const M: usize> PartialEq<PartialArray<T, M>>
    for PartialArray<T, N>
{
    /// Compare the filled elements of [`PartialArray`]s.
    ///
    /// Two [`PartialArray`]s can be compared even if their lengths do not
    /// match. Only the number of filled elements and their values are compared.
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a: PartialArray<u8, 5> = (0..4).collect();
    /// let b: PartialArray<u8, 500> = (0..4).collect();
    ///
    /// assert_eq!(a, b);
    /// ```
    fn eq(&self, other: &PartialArray<T, M>) -> bool {
        self.len() == other.len() && self.deref() == other.deref()
    }
}
impl<T: PartialEq, const N: usize, const M: usize> PartialEq<[T; M]> for PartialArray<T, N> {
    /// Compare a [`PartialArray`] with a normal array.
    ///
    /// This compares the filled elements (potentially less than `N`).
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a: PartialArray<u8, 5> = (10..15).collect();
    /// let b = [10, 11, 12, 13, 14];
    ///
    /// assert_eq!(a, b);
    ///
    /// // the other way round is also possible.
    /// assert_eq!(b, a);
    /// ```
    fn eq(&self, other: &[T; M]) -> bool {
        self.len() == other.len() && self.deref() == other.deref()
    }
}
impl<T: PartialEq, const N: usize, const M: usize> PartialEq<PartialArray<T, M>> for [T; N] {
    /// Compare a normal array with a [`PartialArray`].
    ///
    /// This compares the filled elements (potentially less than `N`).
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a = [10, 11, 12, 13, 14];
    /// let b: PartialArray<u8, 5> = (10..15).collect();
    ///
    /// assert_eq!(a, b);
    ///
    /// // the other way round is also possible.
    /// assert_eq!(b, a);
    /// ```
    fn eq(&self, other: &PartialArray<T, M>) -> bool {
        self.len() == other.len() && self.deref() == other.deref()
    }
}
impl<T: PartialEq, const N: usize> PartialEq<&[T]> for PartialArray<T, N> {
    /// Compare the slice of filled elements (potentially less than `N`).
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a: PartialArray<u8, 5> = (10..15).collect();
    /// let b = &[10, 11, 12, 13, 14][..];
    ///
    /// assert_eq!(a, b);
    /// ```
    fn eq(&self, other: &&[T]) -> bool {
        self.len() == other.len() && self.deref() == other.deref()
    }
}
impl<T: PartialEq, const N: usize> PartialEq<PartialArray<T, N>> for &[T] {
    /// Compare a slice with a [`PartialArray`].
    ///
    /// This compares the filled elements (potentially less than `N`).
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a: &[u8] = &[10, 11, 12, 13, 14];
    /// let b: PartialArray<u8, 5> = (10..15).collect();
    ///
    /// assert_eq!(a, b);
    ///
    /// // the other way round is also possible.
    /// assert_eq!(b, a);
    /// ```
    fn eq(&self, other: &PartialArray<T, N>) -> bool {
        self.len() == other.len() && self.deref() == other.deref()
    }
}
impl<T: Eq, const N: usize> Eq for PartialArray<T, N> {}
impl<T, const N: usize> Default for PartialArray<T, N> {
    /// Initialize an empty [`PartialArray`].
    fn default() -> Self {
        Self {
            array: [Self::UNINIT; N],
            filled: 0,
        }
    }
}
impl<T: Hash, const N: usize> Hash for PartialArray<T, N> {
    /// Calculate the [`Hash`] of a [`PartialArray`].
    ///
    /// This has takes only the initialized elements into account (which is in
    /// line with the `PartialEq` implementation).
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.deref().hash(state);
    }
}
impl<T: PartialOrd, const N: usize> PartialOrd for PartialArray<T, N> {
    /// Compare two [`PartialArray`]s element-by-element.
    ///
    /// # Example
    /// ```
    /// # use partial_array::partial_array;
    /// assert!(partial_array![17.0, 24.0, 2.0] < partial_array![17.0, 24.0, 9.0]);
    /// ```
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.deref().partial_cmp(other.deref())
    }
}
impl<T: Ord, const N: usize> Ord for PartialArray<T, N> {
    /// Compare two [`PartialArray`]s element-by-element.
    ///
    /// # Example
    /// ```
    /// # use partial_array::partial_array;
    /// assert!(partial_array![17, 24, 25] < partial_array![17, 24, 100]);
    /// ```
    fn cmp(&self, other: &Self) -> Ordering {
        self.deref().cmp(other.deref())
    }
}
impl<T: Clone, const N: usize> Clone for PartialArray<T, N> {
    /// Clone a [`PartialArray`].
    ///
    /// The whole array storage is cloned, i.e. the old and new length are the
    /// same. Uninitialized elements remain uninitialized. The number of entries
    /// in the array stays the same.
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// let a: PartialArray::<i32, 10> = (32..37).map(|x| x * 2).collect();
    /// let b = a.clone();
    ///
    /// assert_eq!(a.len(), b.len());
    /// assert_eq!(a, b);
    /// ```
    fn clone(&self) -> Self {
        self.iter().cloned().collect()
    }
}
impl<T, const N: usize> PartialArray<T, N> {
    /// Required for `MaybeUninit::uninit()` in array initializers
    const UNINIT: MaybeUninit<T> = MaybeUninit::uninit();
}
impl<T, const N: usize> FromIterator<T> for PartialArray<T, N> {
    /// Build up a [`PartialArray`] from an iterator with potentially less than
    /// `N` elements.
    ///
    /// # Example
    /// ```
    /// # use partial_array::PartialArray;
    /// // a set of channels set to different values
    /// let mut channels = [12, 13, 8, 12, 255, 8, 8, 8];
    ///
    /// // we want to only have the distinct channel values
    /// channels.sort_unstable();
    /// let distinct_channels: PartialArray<_, 8> = channels
    ///     .windows(2)
    ///     .chain(Some(&[channels[7], 0][..]))
    ///     .filter(|window| window[0] != window[1])
    ///     .map(|window| window[0])
    ///     .collect();
    ///
    /// assert_eq!(distinct_channels.len(), 4);
    /// assert_eq!(distinct_channels, [8, 12, 13, 255]);
    /// ```
    ///
    /// # Panics
    /// Panics, if the length of the iterator os greater than the maximum length
    /// of the array (`N`).
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut result = Self::default();
        result.extend(iter);
        result
    }
}
impl<T, const N: usize> Extend<T> for PartialArray<T, N> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let remaining = (self.filled..N).len();
        let mut iter = iter.into_iter();

        iter.by_ref().take(remaining).for_each(|element| {
            self.array[self.filled] = MaybeUninit::new(element);
            self.filled += 1;
        });

        // check, that there are no more elements left
        let remaining = iter.count();
        assert_eq!(remaining, 0, "Iterator has {} elements to much", remaining);
    }
}
impl<T, const N: usize> IntoIterator for PartialArray<T, N> {
    type Item = T;
    type IntoIter = iter::IntoIter<T, N>;

    fn into_iter(self) -> Self::IntoIter {
        iter::IntoIter::new(self)
    }
}
// TODO: generalize to From<[T; M]> for PartialArray<T, N> where M <= N
impl<T, const N: usize> From<[T; N]> for PartialArray<T, N> {
    fn from(array: [T; N]) -> Self {
        // TODO: is there a more performant way? Maybe with unsafe
        core::array::IntoIter::new(array).collect()
    }
}

/// Create a partial array from a given set of values (similar to `vec![]`).
///
/// # Example
/// ```
/// use partial_array::{partial_array, PartialArray};
///
/// assert_eq!(partial_array![0, 1, 2], PartialArray::from([0, 1, 2]));
/// assert_eq!(partial_array![17, 12, 2, ], PartialArray::from([17, 12, 2]));
/// assert_eq!(partial_array![42; 5], PartialArray::from([42; 5]));
/// ```
#[macro_export]
macro_rules! partial_array {
    ($($element:expr),*$(,)?) => {
        $crate::PartialArray::from([$($element),*])
    };
    ($element:expr; $n: literal) => {
        $crate::PartialArray::from([$element; $n])
    };
}