1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
use crate::result::{Error, Res};
use std::marker::PhantomData;
use std::ops::{RangeFrom, RangeInclusive, RangeToInclusive};

/// A trait for parsers
///
/// A parser takes in input and either outputs a value or reports an error.
///
/// # Implementing the trait
///
/// 1. Decide what types to provide for the input, output and error. For example a type that
///    implements `Parser<&str, u8, String>` can accept `&str` as input to `try_parse()`, and is
///    expected to output `u8`s. If an error occurs, it is reported as
///    [`Error\<String\>`](crate::result::Error).
/// 2. Implement `try_parse()`
/// 3. Use combinators.
/// 4. ??profit??
///
/// The `Parser` trait is already implemented for a couple primitive types. Check out the impl
/// sections below for more concrete examples
pub trait Parser<In, Out, E> {
    /// Recognizes a value from the input and returns the result
    ///
    /// Reports an error if the input could not be matched.
    fn try_parse(&self, input: In) -> Res<In, Out, E>;

    /// Returns a parser that maps a `Parser<In, Out, E>` to `Parser<In, Mapped, E>` by applying a
    /// function to the result of the parser if it succeeded.
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "a";
    ///
    /// let (value, _) = "a".map(str::to_ascii_uppercase).try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, "A");
    /// ```
    fn map<F, Mapped>(self, f: F) -> Map<Self, F, Out>
    where
        Self: Sized,
        F: Fn(Out) -> Mapped,
    {
        Map {
            parser: self,
            f,
            _param: PhantomData,
        }
    }

    /// Returns a parser that maps a `Parser<In, Out, E>` to `Parser<In, Out, Mapped>` by applying
    /// a function to the error reported by the parser if it failed.
    ///
    /// ```
    /// use parser_compose::{Error, Parser};
    ///
    /// enum MyError { Fail }
    ///
    /// let msg = "a";
    ///
    /// let result = "b".map_err(|_| Error::Custom(MyError::Fail)).try_parse(msg);
    ///
    /// assert!(result.is_err());
    /// assert!(matches!(result, Err(Error::Custom(MyError::Fail))));
    ///
    /// ```
    fn map_err<F, M>(self, f: F) -> MapErr<Self, F, E>
    where
        Self: Sized,
        F: Fn(Error<E>) -> Error<M>,
    {
        MapErr {
            parser: self,
            f,
            _param: PhantomData,
        }
    }

    /// Returns a parser that succeeds if `self` does. Otherwise, it's outcome is that of `next`.
    ///
    /// ```
    /// use  parser_compose::Parser;
    ///
    /// let msg = "a";
    ///
    /// let (value, _) = "1".or("a").try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, "a");
    /// ```
    fn or<P>(self, next: P) -> Or<Self, P>
    where
        Self: Sized,
    {
        Or {
            parser1: self,
            parser2: next,
        }
    }

    /// Returns a new parser that succeeds if the predicate returns true. The predicate is given the
    /// extracted value of the current parser as an argument
    ///
    /// ```
    /// use parser_compose::{any_str,Parser};
    ///
    /// let msg = "boo";
    ///
    /// let (value, _) = any_str.when(|s| s == "b").try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, "b");
    /// ```
    fn when<F>(self, pred: F) -> Predicate<Self, F>
    where
        Self: Sized,
        F: Fn(Out) -> bool,
    {
        Predicate {
            parser: self,
            predicate: pred,
        }
    }

    /// Returns a parser that suceeds if it is able to repeat `count` times.
    ///
    /// `count` can be:
    ///
    /// - A single `usize` (e.g. `8`): The parser will try to match at least 8 times and return a `Vec`
    /// of length 8 if it succeeds
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "AAAA";
    ///
    /// let (value, rest) = "A".repeated(3).try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, vec!["A", "A", "A"]);
    /// assert_eq!(rest, "A");
    /// ```
    ///
    /// - A range bounded inclusively from below (e.g. `3..`): The parser will try to match at
    /// least 3 times, but possibly more. If it succeeds, the returned `Vec` is  be guaranteed to
    /// have a value greater than 3.
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "AAAA";
    /// let (value, rest) = "A".repeated(2..).try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, vec!["A", "A", "A", "A"]);
    /// assert_eq!(rest, "");
    /// ```
    ///
    /// - A range bounded inclusively from above (e.g. `..=4`): The parser will try to match at
    /// most 4 times, but possibly less (including zero times!). If it succeeds, the returned `Vec`
    /// will have at most 4 elements
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "AA";
    /// let (value, rest) = "A".repeated(..=4).try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, vec!["A", "A"]);
    /// assert_eq!(rest, "");
    /// ```
    ///
    /// - A range bounded inclusively from above and below (e.g. `3..=5`): The parser will try to
    /// match at least 3 times and at most 5 times. If it succeeds, the returned `Vec` will have a
    /// length between 3 and 5
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "AAAA";
    /// let (value, rest) = "A".repeated(2..=3).try_parse(msg).unwrap();
    ///
    /// assert_eq!(value, vec!["A", "A", "A"]);
    /// assert_eq!(rest, "A");
    /// ```
    fn repeated<R: RepetitionArgument>(self, count: R) -> Repeat<Self, R>
    where
        Self: Sized,
    {
        Repeat {
            parser: self,
            count,
        }
    }

    /// Returns a parser always succeeds but wraps the output in an `Option<Out>`. If the original
    /// parser would have failed, the parser outputs a `None`.
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// let msg = "a";
    ///
    /// let ((b, a), _) = ("b".optional(), "a").try_parse(msg).unwrap();
    ///
    /// assert_eq!(b, None);
    /// assert_eq!(a, "a");
    /// ```
    fn optional(self) -> Optional<Self>
    where
        Self: Sized,
    {
        Optional { inner: self }
    }

    /// Returns a parser that succeeds or fails as normal, but never consumes any input
    /// regardless of the outcome. This can be used to look ahead.
    ///
    /// It corresponds to the "and-predicate" operator in Parsing Expression Grammars.
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// // Recognize the sequence "a" followed by "b", but only if it is followed by a "c"
    /// let a_then_b = ("a", "b", "c".peeked());
    ///
    /// let (value, rest) = a_then_b.try_parse("abc").unwrap();
    /// // note: the value gets recognized and returned, but it does not consume it.
    /// assert_eq!(value, ("a", "b", "c"));
    /// assert_eq!(rest, "c");
    ///
    /// let result = a_then_b.try_parse("abb");
    /// assert!(result.is_err());
    /// ```
    fn peeked(self) -> Peeked<Self>
    where
        Self: Sized,
    {
        Peeked { inner: self }
    }

    /// Reverse of [`peeked()`](crate::Parser::peeked). Returns a parse that succeeds if it was not
    /// able to recognize the input and fails if it was able to.
    ///
    /// It corresponds to the "not-predicate" operator in Parsing Expression Grammars.
    ///
    /// ```
    /// use parser_compose::Parser;
    ///
    /// // This parser matches "foo", but only if it is not followed by  "bar"
    /// let parser = ("foo", "bar".not_peeked());
    ///
    /// let msg = "foobar";
    ///
    /// let result = parser.try_parse(msg);
    ///
    /// assert!(result.is_err());
    ///
    /// let (value, rest) = parser.try_parse("foobaz").unwrap();
    ///
    /// assert_eq!(value, ("foo", ()));
    /// assert_eq!(rest, "baz");
    /// ```
    fn not_peeked(self) -> NotPeeked<Self, Out>
    where
        Self: Sized,
    {
        NotPeeked { inner: self, _phantom: PhantomData }
    }

    /// Returns a parser that is similar to [`map()`](crate::Parser::map) in its behavior, except
    /// that the provided closure may fail, which affects the outcome of the parser.
    ///
    /// ```
    /// use std::str::from_utf8;
    /// use parser_compose::{Error,Parser};
    ///
    /// let msg = [98].as_slice();
    ///
    /// let (value, _) = [98].and_then(|b| {
    ///     // converting to utf8 can fail
    ///     from_utf8(b).map_err(|_| Error::Mismatch)
    /// }).try_parse(msg).unwrap();
    ///
    /// assert_eq!("b", value);
    /// ```
    fn and_then<F, U>(self, f: F) -> AndThen<Self, F, Out>
    where
        Self: Sized,
        F: Fn(Out) -> Result<U, Error<E>>,
    {
        AndThen {
            inner: self,
            f,
            phantom: PhantomData,
        }
    }
}

/// The [`Parser`](crate::Parser) trait is automatically implemented for any function with
/// the following signature:
///
/// `Fn(In) -> parser_compose::Res<In, Out, Err>`
///
/// See the trait documentation for more info about the type parameters.
///
/// Let's say you have a `VecDeque<String>`that you want to parse. No methods in this crate
/// explicitly take a `VecDeque<String>`, but that is not a problem. All the combinators are
/// generic over input, output and errors. So you only need to implement one parser:
/// ```
/// use parser_compose::{Parser, Error, Res} ;
/// use std::collections::vec_deque::VecDeque;
///
/// // A parser that matches any string at the start of the input.
/// fn any_string(mut input: VecDeque<String>) -> Res<VecDeque<String>, String, ()> {
///     let first = input.pop_front().ok_or(Error::Mismatch)?;
///     Ok((first, input))
/// }
///
/// let msg = VecDeque::from([
///     String::from("Hello"),
///     String::from("Hello"),
///     String::from("World"),
/// ]);
///
/// // The function can be used with combinators
/// let parse_hellos = any_string.when(|s| s == "Hello").repeated(2);
/// let parse_world = any_string.when(|s| s == "World");
///
/// let ((hellos, world), rest) = (parse_hellos, parse_world).try_parse(msg).unwrap();
///
/// assert_eq!(hellos, vec!["Hello", "Hello"]);
/// assert_eq!(world, "World");
/// assert_eq!(rest, VecDeque::<String>::new());
///
/// ```
impl<In, Out, E, F> Parser<In, Out, E> for F
where
    F: Fn(In) -> Res<In, Out, E>,
{
    fn try_parse(&self, input: In) -> Res<In, Out, E> {
        (self)(input)
    }
}

/// A slice is treated as a parser that tries to match itself at the start of some longer slice
///
/// The [`Parser`](crate::Parser) trait is implemented for all slices, which all
/// `&[T]` will have the `try_parse()` method for all `T`.
///
/// Calling it will try to do a prefix match of the input with the slice used as the pattern.
///
/// ```
/// use parser_compose::Parser;
///
/// let msg = &['H', 'E', 'L', 'L', 'O'][..];
///
/// let (res, rest) = ['H', 'E'].as_slice().try_parse(msg).unwrap();
///
///
/// assert_eq!(res, &['H', 'E'][..]);
/// assert_eq!(rest, &['L', 'L', 'O'][..]);
/// ```
impl<'pat, 'input, T> Parser<&'input [T], &'pat [T], ()> for &'pat [T]
where
    T: PartialEq,
{
    fn try_parse(&self, input: &'input [T]) -> Res<&'input [T], &'pat [T], ()> {
        match input.starts_with(self) {
            true => Ok((self, &input[self.len()..])),
            false => Err(Error::Mismatch),
        }
    }
}

/// The [`Parser`](crate::Parser) trait is implemented for string slices, which means all
/// `&str`s will have the `try_parse()` method.
///
/// Calling it will try to do a prefix match of the input with the `&str` used as the pattern.
///
/// ```
/// use parser_compose::Parser;
///
/// let msg = "HELLO";
///
/// let (res, rest) = "HE".try_parse(msg).unwrap();
///
/// assert_eq!(res, "HE");
/// assert_eq!(rest, "LLO");
/// ```
impl<'input, 'pat> Parser<&'input str, &'pat str, ()> for &'pat str {
    fn try_parse(&self, input: &'input str) -> Res<&'input str, &'pat str, ()> {
        match input.starts_with(self) {
            true => Ok((self, &input[self.len()..])),
            false => Err(Error::Mismatch),
        }
    }
}

/// A parser that recognizes the first unicode scalar value at the start of a string slice.
///
/// A unicode scalar value is not always what you might consider a
/// "character". This function will output the first thing that rust considers a [`char`](char).
///
/// # Errors
///
/// An error is reported if the string slice is empty
///
/// ```
/// use parser_compose::{Parser, any_str};
///
/// let msg = "👻Boo";
///
/// let (value, rest) = any_str(msg).unwrap();
///
/// assert_eq!(value, "👻");
/// ```
pub fn any_str(input: &str) -> Res<&str, &str, ()> {
    let mut iter = input.char_indices();
    let (start_idx, _) = iter.next().ok_or(Error::Mismatch)?;
    // If there was just one char in the &str, this next call would return `None`.
    let (end_idx, _) = iter.next().unwrap_or((input.len(), ' '));
    Ok((&input[start_idx..end_idx], &input[end_idx..]))
}

/// Returns a parser that recognizes the first byte in a string slice if its value is in the
/// specified range
///
/// The range must be bounded on both ends. Only inclusive ranges are allowed.
///
/// Note: that the first byte in a string slice might not be valid unicode. Only use this if the
/// thing you are parsing is limited to the ASCII character set.
///
/// ```
/// use parser_compose::{Parser, ascii_str};
///
/// let msg = "a1";
///
/// let alphabetic = ascii_str(97..=122);
/// let (value, rest) = alphabetic.try_parse(msg).unwrap();
///
/// assert_eq!(value, "a");
/// assert_eq!(rest, "1");
///
/// let result = alphabetic.try_parse(rest);
/// assert!(result.is_err());
///
/// ```
pub fn ascii_str(range: RangeInclusive<u8>) -> AsciiStr {
    AsciiStr { range }
}

/// A parser that recognizes the first byte in a byte slice.
///
/// # Errors
///
/// An error is reported if the byte slice is empty
///
/// ```
/// use parser_compose::{Parser, any_byte};
///
/// let msg = &[254, 1, 2][..];
///
/// let (value, rest) = any_byte(msg).unwrap();
///
/// assert_eq!(value, [254]);
/// ```
pub fn any_byte(input: &[u8]) -> Res<&[u8], &[u8], ()> {
    if input.is_empty() {
        Err(Error::Mismatch)
    } else {
        Ok((&input[0..1], &input[1..]))
    }
}

/// Returns a parser that recognizes the first byte in a byte slice if its value is in the
/// specified range
///
/// The range must be bounded on both ends. Only inclusive ranges are allowed
///
/// ```
/// use parser_compose::{Parser, byte};
///
/// let msg = &[0, 1][..];
///
/// let zero = byte(0..=0);
/// let (value, rest) = zero.try_parse(msg).unwrap();
///
/// assert_eq!(value, [0]);
/// assert_eq!(rest, [1]);
///
/// let result = zero.try_parse(rest);
/// assert!(result.is_err());
///
/// ```
pub fn byte(range: RangeInclusive<u8>) -> Byte {
    Byte { range }
}

/// A parser that recognizes an ascii `str` in the given range. See
/// [`ascii_str`](crate::parser::ascii_str)
pub struct AsciiStr {
    range: RangeInclusive<u8>,
}

/// A parser that recognizes an byte in the given range. See [`byte`](crate::parser::byte)
pub struct Byte {
    range: RangeInclusive<u8>,
}

impl<'input> Parser<&'input str, &'input str, ()> for AsciiStr {
    fn try_parse(&self, input: &'input str) -> Res<&'input str, &'input str, ()> {
        any_str
            .when(|s| {
                let b = s.as_bytes();
                b[0] >= *self.range.start() && b[0] <= *self.range.end()
            })
            .try_parse(input)
    }
}

impl<'input> Parser<&'input [u8], &'input [u8], ()> for Byte {
    fn try_parse(&self, input: &'input [u8]) -> Res<&'input [u8], &'input [u8], ()> {
        any_byte
            .when(|s| s[0] >= *self.range.start() && s[0] <= *self.range.end())
            .try_parse(input)
    }
}

/// Trait used to accept the different argument forms we allow for the
/// [repeated](crate::Parser::repeated) combinator
pub trait RepetitionArgument {
    /// The minimum amount of times the _thing_ should be repeated
    fn at_least(&self) -> usize;
    /// The maximum aount of times the _thing_ should be repeated. If it is unbounded, this will
    /// return `None`
    fn at_most(&self) -> Option<usize>;
}

impl RepetitionArgument for RangeFrom<usize> {
    fn at_least(&self) -> usize {
        self.start
    }
    fn at_most(&self) -> Option<usize> {
        None
    }
}

impl RepetitionArgument for RangeInclusive<usize> {
    fn at_least(&self) -> usize {
        *self.start()
    }

    fn at_most(&self) -> Option<usize> {
        Some(*self.end())
    }
}

impl RepetitionArgument for RangeToInclusive<usize> {
    fn at_least(&self) -> usize {
        0
    }
    fn at_most(&self) -> Option<usize> {
        Some(self.end)
    }
}

impl RepetitionArgument for usize {
    fn at_least(&self) -> usize {
        *self
    }

    fn at_most(&self) -> Option<usize> {
        Some(*self)
    }
}

/// A parser that succeeds if it matches the specified number of times. See
/// [`repeated()`](crate::Parser::repeated)
pub struct Repeat<P, R: RepetitionArgument> {
    parser: P,
    count: R,
}

impl<In, Out, E, P, R> Parser<In, Vec<Out>, E> for Repeat<P, R>
where
    P: Parser<In, Out, E>,
    R: RepetitionArgument,
    In: Clone,
{
    fn try_parse(&self, input: In) -> Res<In, Vec<Out>, E> {
        let lower_bound = self.count.at_least();
        let upper_bound = self.count.at_most();

        let mut results = vec![];
        let mut rest = input.clone();

        let mut satisfied_lower_bound = false;

        if let Some(u) = upper_bound {
            assert!(
                u >= lower_bound,
                "upper bound should be greater than lower bound"
            );

            if u == 0 {
                return Ok((results, rest));
            }
        }

        if lower_bound == 0 {
            satisfied_lower_bound = true;
        }

        while let Ok((value, remaining)) = self.parser.try_parse(rest.clone()) {
            results.push(value);
            rest = remaining;

            if results.len() >= lower_bound {
                satisfied_lower_bound = true;
            }

            if let Some(u) = upper_bound {
                if results.len() == u {
                    // If we've satisfied the upper bound, we don't need to look any further
                    return Ok((results, rest));
                }
            };
        }

        if satisfied_lower_bound {
            return Ok((results, rest));
        }

        Err(Error::Mismatch)
    }
}

/// A parser that only succeeds if it does not report an error and the predicate returns `true`.
/// See [`when()`](crate::Parser::when)
pub struct Predicate<P, F> {
    parser: P,
    predicate: F,
}

impl<In, Out, E, P, F> Parser<In, Out, E> for Predicate<P, F>
where
    P: Parser<In, Out, E>,
    F: Fn(Out) -> bool,
    Out: Clone,
{
    fn try_parse(&self, input: In) -> Res<In, Out, E> {
        match self.parser.try_parse(input) {
            Ok((value, rest)) => match (self.predicate)(value.clone()) {
                true => Ok((value, rest)),
                false => Err(Error::Mismatch),
            },
            Err(e) => Err(e),
        }
    }
}

/// A parser that always succeeds but will wrap its value in an `Option`. See
/// [`optional()`](crate::Parser::optional)
pub struct Optional<P> {
    inner: P,
}

impl<In, Out, E, P> Parser<In, Option<Out>, E> for Optional<P>
where
    In: Clone,
    P: Parser<In, Out, E>,
{
    fn try_parse(&self, input: In) -> Res<In, Option<Out>, E> {
        match self.inner.try_parse(input.clone()) {
            Ok((value, rest)) => Ok((Some(value), rest)),
            Err(_) => Ok((None, input)),
        }
    }
}

/// A parser that does not consume any input regardless of its outcome. See
/// [`peeked()`](crate::Parser::peeked)
pub struct Peeked<P> {
    inner: P,
}

impl<In, Out, E, P> Parser<In, Out, E> for Peeked<P>
where
    In: Clone,
    P: Parser<In, Out, E>,
{
    fn try_parse(&self, input: In) -> Res<In, Out, E> {
        match self.inner.try_parse(input.clone()) {
            Ok((value, _)) => Ok((value, input)),
            Err(e) => Err(e),
        }
    }
}

/// See [`not_peeked()`](crate::Parser::not_peeked)
pub struct NotPeeked<P, Z> {
    inner: P,
    _phantom: PhantomData<Z>
}

impl<In, Out, E, P> Parser<In, (), E> for NotPeeked<P, Out>
where
    In: Clone,
    P: Parser<In, Out, E>,
{
    fn try_parse(&self, input: In) -> Res<In, (), E> {
        match self.inner.try_parse(input.clone()) {
            Ok(_) => Err(Error::Mismatch),
            Err(_) => Ok(((), input)),
        }
    }
}

/// A parser that reports an error if it fails, otherwise calls a function with the wrapped value
/// and returns the result. See [`and_then()`](crate::Parser::and_then)
pub struct AndThen<P, F, Z> {
    inner: P,
    f: F,
    phantom: PhantomData<Z>,
}

impl<In, Out, E, P, F, U> Parser<In, U, E> for AndThen<P, F, Out>
where
    P: Parser<In, Out, E>,
    F: Fn(Out) -> Result<U, Error<E>>,
{
    fn try_parse(&self, input: In) -> Res<In, U, E> {
        match self.inner.try_parse(input) {
            Ok((value, rest)) => match (self.f)(value) {
                Ok(m) => Ok((m, rest)),
                Err(e) => Err(e),
            },
            Err(e) => Err(e),
        }
    }
}

macro_rules! impl_tuple {
    ($($parser:ident : $parser_type:ident : $out:ident : $out_type:ident),+) => {
        /// A tuple of parsers is treated as a parser that tries its inner parsers in turn, feeding
        /// the leftover input from the first as the input to the other and so on
        ///
        /// Calling the `.try_parse()` on the tuple returns a new tuple containing the extracted values.
        ///
        /// This is implemented for tuples up to 12 items long
        impl<In $(, $parser_type, $out_type)+, E> Parser<In,($($out_type,)+) ,E> for ($($parser_type,)+)
        where $($parser_type: $crate::Parser<In, $out_type, E>,)+
        {
            fn try_parse(&self, input: In) -> $crate::result::Res<In, ($($out_type,)+), E> {
                let rest = input;
                let ( $( $parser, )+) = self;

                $(
                    let ($out, rest) = match $parser.try_parse(rest) {
                        Ok(v) => v,
                        Err(e) => return Err(e),
                    };
                ) *

                Ok((($($out, )+) , rest))
            }
        }
    }
}

// Ah, good 'ole macros.
//
// The purpose of the `impl_tuple` macro is to generate the following impl for a tuple whose length
// is the number of arguments to the macro.
// `impl Parser<...> for (T1, ) where T1: Parser<..> { ... }`
//
// So this call: `impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1);` generates the Parser impl for tuples of
// length 2.
// This call to `impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2);`  generates the impl for
// tuples of length 3, and so on.
//
// Each argument to the macro is a colon delimited keyword that will be used as is in the
// implementation to refer to the type/name of the parser or its output at that tuple location
impl_tuple!(p0:P0:o0:O0);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6, p7:P7:o7:O7);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6, p7:P7:o7:O7, p8:P8:o8:O8);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6, p7:P7:o7:O7, p8:P8:o8:O8, p9:P9:o9:O9);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6, p7:P7:o7:O7, p8:P8:o8:O8, p9:P9:o9:O9, p10:P10:o10:O10);
impl_tuple!(p0:P0:o0:O0, p1:P1:o1:O1, p2:P2:o2:O2, p3:P3:o3:O3, p4:P4:o4:O4, p5:P5:o5:O5, p6:P6:o6:O6, p7:P7:o7:O7, p8:P8:o8:O8, p9:P9:o9:O9, p10:P10:o10:O10, p11:P11:o11:O11);

/// A parser that succeeds if at least one inner parser succeeds. See [`or()`](crate::Parser::or)
pub struct Or<P1, P2> {
    parser1: P1,
    parser2: P2,
}

impl<In, Out, E, P1, P2> Parser<In, Out, E> for Or<P1, P2>
where
    P1: Parser<In, Out, E>,
    P2: Parser<In, Out, E>,
    In: Clone,
{
    fn try_parse(&self, input: In) -> Res<In, Out, E> {
        match self.parser1.try_parse(input.clone()) {
            Ok((value, rest)) => Ok((value, rest)),
            Err(_) => match self.parser2.try_parse(input) {
                Ok((value, rest)) => Ok((value, rest)),
                Err(e) => Err(e),
            },
        }
    }
}

/// A parser that reports an error if it fails, but pipes its value through a function if it succeeds.
/// See [`map()`](crate::Parser::map).
pub struct Map<P, F, V> {
    parser: P,
    f: F,
    _param: PhantomData<V>,
}

impl<In, Out, E, P, F, M> Parser<In, M, E> for Map<P, F, Out>
where
    P: Parser<In, Out, E>,
    F: Fn(Out) -> M,
{
    fn try_parse(&self, input: In) -> Res<In, M, E> {
        match self.parser.try_parse(input) {
            Ok((v, rest)) => Ok(((self.f)(v), rest)),
            Err(e) => Err(e),
        }
    }
}

/// A parser that returns its value if it succeeds, but pipes its error through a function if it fails.
/// See [`map_err()`](crate::Parser::map_err)
pub struct MapErr<P, F, E> {
    parser: P,
    f: F,
    _param: PhantomData<E>,
}

impl<In, Out, E, P, F, M> Parser<In, Out, M> for MapErr<P, F, E>
where
    P: Parser<In, Out, E>,
    F: Fn(Error<E>) -> Error<M>,
{
    fn try_parse(&self, input: In) -> Res<In, Out, M> {
        match self.parser.try_parse(input) {
            Ok((v, rest)) => Ok((v, rest)),
            Err(e) => Err((self.f)(e)),
        }
    }
}

#[cfg(test)]
mod test {
    use crate::{Parser, Res};

    fn first_elem(mut input: Vec<&str>) -> Res<Vec<&str>, &str, ()> {
        let first = input.remove(0);
        Ok((first, input))
    }

    #[test]
    fn combinators_can_use_any_input_that_is_clone() {
        let msg = vec!["HELLO", "HELLO", "WORLD"];

        let (value, rest) = first_elem.repeated(2).try_parse(msg).unwrap();

        assert_eq!(value, vec!["HELLO", "HELLO"]);
        assert_eq!(rest, vec!["WORLD"]);
    }
}
#[cfg(test)]
mod test_map_combinator {
    use crate::{Error, Parser};

    #[test]
    fn test_matry_parse() {
        let msg = "AAA";
        let (value, rest) = "A".map(str::as_bytes).try_parse(msg).unwrap();

        assert_eq!(value, [65]);
        assert_eq!(rest, "AA");
    }

    struct BWasNotFound {}

    #[test]
    fn test_map_err() {
        let msg = "AA";
        let result = "B"
            .map(str::as_bytes)
            .map_err(|_| Error::Custom(BWasNotFound {}))
            .try_parse(msg);
        assert!(result.is_err());
        assert!(matches!(result, Err(Error::Custom(BWasNotFound {}))));
    }
}

#[cfg(test)]
mod test_or_combinator {
    use crate::Parser;

    #[test]
    fn it_works() {
        let msg = "GET";

        let result = "POST".or("PUT").try_parse(msg);
        assert!(result.is_err());

        let (value, _) = "GET".or("POST").try_parse(msg).unwrap();
        assert_eq!(value, "GET");

        // The first match is reported
        let (value, _) = "G".or("GE").or("GET").try_parse(msg).unwrap();
        assert_eq!(value, "G");
    }
}

#[cfg(test)]
mod test_when_combinator {
    use crate::Parser;

    #[test]
    fn it_works() {
        let msg = "GET";
        let pass = false;

        let result = "GET".when(|_| pass).try_parse(msg);
        assert!(result.is_err());

        let pass = true;
        let (value, _) = "GET".when(|_| pass).try_parse(msg).unwrap();
        assert_eq!(value, "GET");
    }
}

#[cfg(test)]
mod test_tuple_combinator {
    use crate::{any_str, Parser, Res};

    fn whitespace(input: &str) -> Res<&str, &str, ()> {
        any_str.when(|c| c == " ").try_parse(input)
    }

    #[test]
    fn it_works() {
        let msg = "GET https://example.org HTTP/1.1";

        let method_parser = "GET".or("POST").or("PUT");

        let scheme_parser = "http://".or("https://");

        let authority_parser = "example.org";

        let version_parser = "HTTP/1.0".or("HTTP/1.1");

        let (method, _, scheme, authority, _, version) = (
            method_parser,
            whitespace,
            scheme_parser,
            authority_parser,
            whitespace,
            version_parser,
        )
            .try_parse(msg)
            .unwrap()
            .0;

        assert_eq!(method, "GET");
        assert_eq!(scheme, "https://");
        assert_eq!(authority, "example.org");
        assert_eq!(version, "HTTP/1.1");
    }
}
#[cfg(test)]
mod test_repeated_combinator {
    use crate::Parser;

    #[test]
    fn test_single_value_count() {
        let msg = "AAA";

        let (value, rest) = "A".repeated(2).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A", "A"]);
        assert_eq!(rest, "A");

        let result = "A".repeated(4).try_parse(msg);
        assert!(result.is_err());

        let (value, rest) = "A".repeated(0).try_parse(msg).unwrap();
        assert!(value.is_empty());
        assert_eq!(rest, "AAA");
    }

    #[test]
    fn test_bounded_both_sides() {
        let msg = "AAAABB";

        let (value, rest) = "A".repeated(0..=0).try_parse(msg).unwrap();
        assert!(value.is_empty());
        assert_eq!(rest, msg);

        let (value, rest) = "A".repeated(1..=1).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A"]);
        assert_eq!(rest, "AAABB");

        let (value, rest) = "A".repeated(1..=3).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A", "A", "A"]);
        assert_eq!(rest, "ABB");

        let (value, rest) = "A".repeated(1..=10).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A", "A", "A", "A"]);
        assert_eq!(rest, "BB");
    }

    #[test]
    #[should_panic]
    fn test_bounded_both_sides_panics_if_lower_is_greater_than_upper() {
        let msg = "AAAABB";
        let _ = "A".repeated(1..=0).try_parse(msg);
    }

    #[test]
    fn test_lower_bound() {
        let msg = "AAAB";

        let result = "A".repeated(4..).try_parse(msg);
        assert!(result.is_err());

        let (value, rest) = "A".repeated(1..).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A", "A", "A"]);
        assert_eq!(rest, "B");
    }

    #[test]
    fn test_upper_bound() {
        let msg = "BB";

        let (value, rest) = "A".repeated(..=3).try_parse(msg).unwrap();
        assert!(value.is_empty());
        assert_eq!(rest, "BB");

        let msg = "AAB";
        let (value, rest) = "A".repeated(..=0).try_parse(msg).unwrap();
        assert!(value.is_empty());
        assert_eq!(rest, "AAB");

        let (value, rest) = "A".repeated(..=1).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A"]);
        assert_eq!(rest, "AB");

        let (value, rest) = "A".repeated(..=10).try_parse(msg).unwrap();
        assert_eq!(value, vec!["A", "A"]);
        assert_eq!(rest, "B");
    }

    #[test]
    fn always_succeeds_with_zero_lower_bound() {
        let msg = "GG";

        let (value, rest) = "A".repeated(0..).try_parse(msg).unwrap();
        assert_eq!(value, vec![] as Vec<&str>);
        assert_eq!(rest, "GG");
    }
}

#[cfg(test)]
mod test_peeked_combinator {
    use crate::Parser;

    #[test]
    fn test_attempt_does_not_consume_input_on_success() {
        let msg = "AAAAB";

        let ((a, b), rest) = (
            "A".repeated(1..).map(|s| s.into_iter().collect::<String>()),
            "B".peeked(),
        )
            .try_parse(msg)
            .unwrap();

        assert_eq!(a, "AAAA");
        assert_eq!(b, "B");
        assert_eq!(rest, "B");
    }

    #[test]
    fn test_not_peeeked() {
        // This parser matches a single "a", but only if it is not part of an arbitrary long
        // sequence of "a"'s followed by a "b".
        // I got this from the wikipedia page on parsing expression grammars
        let tricky = (("a".repeated(1..), "b").not_peeked(), "a");

        let fail = "aaaba";
        let pass = "aaaa";

        let result = tricky.try_parse(fail);
        assert!(result.is_err());

        let (value, rest) = tricky.try_parse(pass).unwrap();

        assert_eq!(value, ((), "a"));
        assert_eq!(rest, "aaa");
    }
}

#[cfg(test)]
mod test_str_parsers {
    use crate::{any_str, ascii_str, Parser};
    #[test]
    fn empty_str() {
        let msg = "H";
        let (value, rest) = "".try_parse(msg).unwrap();
        assert_eq!(value, "");
        assert_eq!(rest, msg);
    }

    #[test]
    fn test_any_str() {
        let msg = "🏠";
        let (value, rest) = any_str.try_parse(msg).unwrap();

        assert_eq!(value, "🏠");
        assert_eq!(rest, "");
    }

    #[test]
    fn ascii_range_parsers() {
        let msg = "abc";
        let (value, rest) = ascii_str(97..=97).try_parse(msg).unwrap();
        assert_eq!(value, "a");
        let result = ascii_str(97..=97).try_parse(rest);
        assert!(result.is_err());
    }
}