1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Copyright 2019 Contributors to the Parsec project.
// SPDX-License-Identifier: Apache-2.0
//! # PsaSignHash operation
//!
//! Sign an already-calculated hash with a private key.

use super::psa_key_attributes::Attributes;
use crate::operations::psa_algorithm::AsymmetricSignature;
use crate::requests::ResponseStatus;

/// Native object for asymmetric sign operations.
#[derive(Debug)]
pub struct Operation {
    /// Defines which key should be used for the signing operation.
    pub key_name: String,
    /// An asymmetric signature algorithm that separates the hash and sign operations, that is
    /// compatible with the type of key.
    pub alg: AsymmetricSignature,
    /// The input whose signature is to be verified. This is usually the hash of a message.
    pub hash: zeroize::Zeroizing<Vec<u8>>,
}

/// Native object for asymmetric sign result.
#[derive(Debug)]
pub struct Result {
    /// The `signature` field contains the resulting bytes from the signing operation. The format of
    /// the signature is as specified by the provider doing the signing.
    pub signature: zeroize::Zeroizing<Vec<u8>>,
}

impl Operation {
    /// Validate the contents of the operation against the attributes of the key it targets
    ///
    /// This method checks that:
    /// * the key policy allows signing hashes
    /// * the key policy allows the signing algorithm requested in the operation
    /// * the key type is compatible with the requested algorithm
    /// * the length of the given digest is consistent with the specified signing algorithm
    pub fn validate(&self, key_attributes: Attributes) -> crate::requests::Result<()> {
        key_attributes.can_sign_hash()?;
        key_attributes.permits_alg(self.alg.into())?;
        key_attributes.compatible_with_alg(self.alg.into())?;
        if !self.alg.is_hash_len_permitted(self.hash.len()) {
            return Err(ResponseStatus::PsaErrorInvalidArgument);
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::operations::psa_algorithm::{Algorithm, AsymmetricSignature, Hash};
    use crate::operations::psa_key_attributes::{EccFamily, Lifetime, Policy, Type, UsageFlags};

    fn get_attrs() -> Attributes {
        Attributes {
            lifetime: Lifetime::Persistent,
            key_type: Type::EccKeyPair {
                curve_family: EccFamily::SecpR1,
            },
            bits: 256,
            policy: Policy {
                usage_flags: UsageFlags {
                    export: false,
                    copy: false,
                    cache: false,
                    encrypt: false,
                    decrypt: false,
                    sign_message: false,
                    verify_message: false,
                    sign_hash: true,
                    verify_hash: false,
                    derive: false,
                },
                permitted_algorithms: Algorithm::AsymmetricSignature(AsymmetricSignature::Ecdsa {
                    hash_alg: Hash::Sha256.into(),
                }),
            },
        }
    }

    #[test]
    fn validate_success() {
        (Operation {
            key_name: String::from("some key"),
            alg: AsymmetricSignature::Ecdsa {
                hash_alg: Hash::Sha256.into(),
            },
            hash: vec![0xff; 32].into(),
        })
        .validate(get_attrs())
        .unwrap();
    }

    #[test]
    fn cannot_sign() {
        let mut attrs = get_attrs();
        attrs.policy.usage_flags.sign_hash = false;
        assert_eq!(
            (Operation {
                key_name: String::from("some key"),
                alg: AsymmetricSignature::Ecdsa {
                    hash_alg: Hash::Sha256.into(),
                },
                hash: vec![0xff; 32].into(),
            })
            .validate(attrs)
            .unwrap_err(),
            ResponseStatus::PsaErrorNotPermitted
        );
    }

    #[test]
    fn wrong_algorithm() {
        assert_eq!(
            (Operation {
                key_name: String::from("some key"),
                alg: AsymmetricSignature::Ecdsa {
                    hash_alg: Hash::Sha224.into(),
                },
                hash: vec![0xff; 28].into(),
            })
            .validate(get_attrs())
            .unwrap_err(),
            ResponseStatus::PsaErrorNotPermitted
        );
    }

    #[test]
    fn wrong_scheme() {
        assert_eq!(
            (Operation {
                key_name: String::from("some key"),
                alg: AsymmetricSignature::RsaPss {
                    hash_alg: Hash::Sha224.into(),
                },
                hash: vec![0xff; 28].into(),
            })
            .validate(get_attrs())
            .unwrap_err(),
            ResponseStatus::PsaErrorNotPermitted
        );
    }

    #[test]
    fn invalid_hash() {
        assert_eq!(
            (Operation {
                key_name: String::from("some key"),
                alg: AsymmetricSignature::Ecdsa {
                    hash_alg: Hash::Sha256.into(),
                },
                hash: vec![0xff; 16].into(),
            })
            .validate(get_attrs())
            .unwrap_err(),
            ResponseStatus::PsaErrorInvalidArgument
        );
    }
}