Struct parry2d::shape::ConvexPolygon

source ·
pub struct ConvexPolygon { /* private fields */ }
Expand description

A 2D convex polygon.

Implementations§

source§

impl ConvexPolygon

source

pub fn aabb(&self, pos: &Isometry<Real>) -> Aabb

Computes the world-space Aabb of this convex polygon, transformed by pos.

source

pub fn local_aabb(&self) -> Aabb

Computes the local-space Aabb of this convex polygon.

source§

impl ConvexPolygon

source

pub fn bounding_sphere(&self, pos: &Isometry<Real>) -> BoundingSphere

Computes the world-space bounding sphere of this convex polygon, transformed by pos.

source

pub fn local_bounding_sphere(&self) -> BoundingSphere

Computes the local-space bounding sphere of this convex polygon.

source§

impl ConvexPolygon

source

pub fn from_convex_hull(points: &[Point<Real>]) -> Option<Self>

Creates a new 2D convex polygon from an arbitrary set of points.

This explicitly computes the convex hull of the given set of points. Returns None if the convex hull computation failed.

source

pub fn from_convex_polyline(points: Vec<Point<Real>>) -> Option<Self>

Creates a new 2D convex polygon from a set of points assumed to describe a counter-clockwise convex polyline.

Convexity of the input polyline is not checked. Returns None if all points form an almost flat line.

source

pub fn points(&self) -> &[Point<Real>]

The vertices of this convex polygon.

source

pub fn normals(&self) -> &[Unit<Vector<Real>>]

The normals of the edges of this convex polygon.

source

pub fn scaled(self, scale: &Vector<Real>) -> Option<Self>

Computes a scaled version of this convex polygon.

Returns None if the result had degenerate normals (for example if the scaling factor along one axis is zero).

source

pub fn offsetted(&self, amount: Real) -> Self

Returns a mitered offset of the polygon.

§Arguments
  • amount - size of the inflation. Each edge is moved outwards by this amount.
§Panics

Panics if amount is not a non-negative finite number.

source

pub fn support_feature_id_toward( &self, local_dir: &Unit<Vector<Real>> ) -> FeatureId

Get the ID of the feature with a normal that maximizes the dot product with local_dir.

source

pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>>

The normal of the given feature.

Trait Implementations§

source§

impl Clone for ConvexPolygon

source§

fn clone(&self) -> ConvexPolygon

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ConvexPolygon

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PointQuery for ConvexPolygon

source§

fn project_local_point( &self, point: &Point<Real>, solid: bool ) -> PointProjection

Projects a point on self. Read more
source§

fn project_local_point_and_get_feature( &self, point: &Point<Real> ) -> (PointProjection, FeatureId)

Projects a point on the boundary of self and returns the id of the feature the point was projected on.
source§

fn project_local_point_with_max_dist( &self, pt: &Point<Real>, solid: bool, max_dist: Real ) -> Option<PointProjection>

Projects a point on self, unless the projection lies further than the given max distance. Read more
source§

fn project_point_with_max_dist( &self, m: &Isometry<Real>, pt: &Point<Real>, solid: bool, max_dist: Real ) -> Option<PointProjection>

Projects a point on self transformed by m, unless the projection lies further than the given max distance.
source§

fn distance_to_local_point(&self, pt: &Point<Real>, solid: bool) -> Real

Computes the minimal distance between a point and self.
source§

fn contains_local_point(&self, pt: &Point<Real>) -> bool

Tests if the given point is inside of self.
source§

fn project_point( &self, m: &Isometry<Real>, pt: &Point<Real>, solid: bool ) -> PointProjection

Projects a point on self transformed by m.
source§

fn distance_to_point( &self, m: &Isometry<Real>, pt: &Point<Real>, solid: bool ) -> Real

Computes the minimal distance between a point and self transformed by m.
source§

fn project_point_and_get_feature( &self, m: &Isometry<Real>, pt: &Point<Real> ) -> (PointProjection, FeatureId)

Projects a point on the boundary of self transformed by m and returns the id of the feature the point was projected on.
source§

fn contains_point(&self, m: &Isometry<Real>, pt: &Point<Real>) -> bool

Tests if the given point is inside of self transformed by m.
source§

impl PolygonalFeatureMap for ConvexPolygon

source§

fn local_support_feature( &self, dir: &Unit<Vector<Real>>, out_feature: &mut PolygonalFeature )

Compute the support polygonal face of self towards the dir.
source§

fn is_convex_polyhedron(&self) -> bool

Is this shape a ConvexPolyhedron?
source§

impl RayCast for ConvexPolygon

source§

fn cast_local_ray_and_get_normal( &self, ray: &Ray, max_time_of_impact: Real, solid: bool ) -> Option<RayIntersection>

Computes the time of impact, and normal between this transformed shape and a ray.
source§

fn cast_local_ray( &self, ray: &Ray, max_time_of_impact: Real, solid: bool ) -> Option<Real>

Computes the time of impact between this transform shape and a ray.
source§

fn intersects_local_ray(&self, ray: &Ray, max_time_of_impact: Real) -> bool

Tests whether a ray intersects this transformed shape.
source§

fn cast_ray( &self, m: &Isometry<Real>, ray: &Ray, max_time_of_impact: Real, solid: bool ) -> Option<Real>

Computes the time of impact between this transform shape and a ray.
source§

fn cast_ray_and_get_normal( &self, m: &Isometry<Real>, ray: &Ray, max_time_of_impact: Real, solid: bool ) -> Option<RayIntersection>

Computes the time of impact, and normal between this transformed shape and a ray.
source§

fn intersects_ray( &self, m: &Isometry<Real>, ray: &Ray, max_time_of_impact: Real ) -> bool

Tests whether a ray intersects this transformed shape.
source§

impl Shape for ConvexPolygon

source§

fn clone_box(&self) -> Box<dyn Shape>

Clones this shape into a boxed trait-object.
source§

fn compute_local_aabb(&self) -> Aabb

Computes the Aabb of this shape.
source§

fn compute_local_bounding_sphere(&self) -> BoundingSphere

Computes the bounding-sphere of this shape.
source§

fn compute_aabb(&self, position: &Isometry<Real>) -> Aabb

Computes the Aabb of this shape with the given position.
source§

fn mass_properties(&self, density: Real) -> MassProperties

Compute the mass-properties of this shape given its uniform density.
source§

fn is_convex(&self) -> bool

Is this shape known to be convex? Read more
source§

fn shape_type(&self) -> ShapeType

Gets the type tag of this shape.
source§

fn as_typed_shape(&self) -> TypedShape<'_>

Gets the underlying shape as an enum.
source§

fn ccd_thickness(&self) -> Real

source§

fn ccd_angular_thickness(&self) -> Real

source§

fn as_support_map(&self) -> Option<&dyn SupportMap>

Convents this shape into its support mapping, if it has one.
source§

fn as_polygonal_feature_map(&self) -> Option<(&dyn PolygonalFeatureMap, Real)>

Converts this shape to a polygonal feature-map, if it is one.
source§

fn feature_normal_at_point( &self, feature: FeatureId, _point: &Point<Real> ) -> Option<Unit<Vector<Real>>>

The shape’s normal at the given point located on a specific feature.
source§

fn compute_bounding_sphere(&self, position: &Isometry<Real>) -> BoundingSphere

Computes the bounding-sphere of this shape with the given position.
source§

fn as_composite_shape(&self) -> Option<&dyn SimdCompositeShape>

source§

fn compute_swept_aabb( &self, start_pos: &Isometry<Real>, end_pos: &Isometry<Real> ) -> Aabb

Computes the swept Aabb of this shape, i.e., the space it would occupy by moving from the given start position to the given end position.
source§

impl SupportMap for ConvexPolygon

source§

fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real>

source§

fn local_support_point_toward(&self, dir: &Unit<Vector<Real>>) -> Point<Real>

Same as self.local_support_point except that dir is normalized.
source§

fn support_point( &self, transform: &Isometry<Real>, dir: &Vector<Real> ) -> Point<Real>

source§

fn support_point_toward( &self, transform: &Isometry<Real>, dir: &Unit<Vector<Real>> ) -> Point<Real>

Same as self.support_point except that dir is normalized.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> Downcast for T
where T: Any,

source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.