1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
use crate::{Symbol, Terminal};
use std::fmt::{Debug, Display, Error, Formatter};
use std::hash::Hash;
use std::ops::Index;

pub type Rhs = Vec<Symbol>;

///
/// Production type
///
#[derive(Debug, Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct Pr(pub Symbol, pub Rhs);

impl Display for Pr {
    ///
    /// The output format for a production roughly follows the Yacc format.
    ///
    /// ```
    /// use parol::{Pr, Symbol};
    ///
    /// let pr = Pr::new("S", vec![]);
    /// assert_eq!("S: ;", format!("{}", pr));
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::n("L")]);
    /// assert_eq!("S: N L;", format!("{}", pr));
    /// let pr = Pr::new("S", vec![Symbol::n("I"), Symbol::n("L")]);
    /// assert_eq!("S: I L;", format!("{}", pr));
    /// let pr = Pr::new("S", vec![Symbol::t(","), Symbol::n("N")]);
    /// assert_eq!(r#"S: "," N;"#, format!("{}", pr));
    /// let pr = Pr::new("S", vec![Symbol::t("d")]);
    /// assert_eq!(r#"S: "d";"#, format!("{}", pr));
    /// let pr = Pr::new("S", vec![Symbol::t(r#"\d"#), Symbol::t("e")]);
    /// assert_eq!(r#"S: "\d" "e";"#, format!("{}", pr));
    /// ```
    ///
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        write!(
            f,
            "{}: {};",
            self.0,
            self.1
                .iter()
                .fold(Vec::new(), |mut acc, s| {
                    acc.push(format!("{}", s));
                    acc
                })
                .join(" ")
        )
    }
}

impl Default for Pr {
    fn default() -> Self {
        Self(Symbol::N("".to_owned()), Rhs::default())
    }
}

impl Pr {
    pub fn new(n: &str, r: Rhs) -> Self {
        if !r.iter().all(|s| Self::is_allowed_symbol(s)) {
            panic!("Unexpected symbol kind!");
        }
        Self(Symbol::N(n.to_owned()), r)
    }
    pub fn get_n(&self) -> String {
        self.0.get_n().unwrap()
    }
    pub fn get_n_str(&self) -> &str {
        self.0.get_n_ref().unwrap()
    }
    pub fn get_r(&self) -> &Rhs {
        &self.1
    }
    pub fn get_r_mut(&mut self) -> &mut Rhs {
        &mut self.1
    }
    pub fn take(self) -> (String, Rhs) {
        (self.0.get_n().unwrap(), self.1)
    }
    pub fn set_n(&mut self, n: String) {
        self.0 = Symbol::N(n);
    }
    pub fn set_r(&mut self, r: Rhs) {
        if !r.iter().all(|s| Self::is_allowed_symbol(s)) {
            panic!("Unexpected symbol kind!");
        }
        self.1 = r;
    }
    pub fn is_empty(&self) -> bool {
        self.1.is_empty()
    }
    pub fn len(&self) -> usize {
        self.1.len()
    }
    ///
    /// Calculates the length of the terminal symbols at the beginning of the RHS.
    ///
    /// ```
    /// use parol::{Pr, Symbol};
    ///
    /// let pr = Pr::new("S", vec![]);
    /// assert_eq!(0, pr.first_len());
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::n("L")]);
    /// assert_eq!(0, pr.first_len());
    /// let pr = Pr::new("S", vec![Symbol::n("I"), Symbol::n("L")]);
    /// assert_eq!(0, pr.first_len());
    /// let pr = Pr::new("S", vec![Symbol::t(","), Symbol::n("N")]);
    /// assert_eq!(1, pr.first_len());
    /// let pr = Pr::new("S", vec![Symbol::t("d")]);
    /// assert_eq!(1, pr.first_len());
    /// let pr = Pr::new("S", vec![Symbol::t("d"), Symbol::t("e")]);
    /// assert_eq!(2, pr.first_len());
    /// ```
    ///
    pub fn first_len(&self) -> usize {
        self.1
            .iter()
            .take_while(|s| {
                matches!(s, Symbol::T(Terminal::Trm(_))) || matches!(s, Symbol::T(Terminal::End))
            })
            .count()
    }

    ///
    /// Calculates the length of the terminal symbols starting from an offset within the RHS.
    ///
    /// ```
    /// use parol::{Pr, Symbol};
    ///
    /// let pr = Pr::new("S", vec![]);
    /// assert_eq!(0, pr.first_len_at(0));
    /// assert_eq!(0, pr.first_len_at(1));
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::n("L")]);
    /// assert_eq!(0, pr.first_len_at(0));
    /// assert_eq!(0, pr.first_len_at(1));
    /// assert_eq!(0, pr.first_len_at(2));
    /// assert_eq!(0, pr.first_len_at(3));
    /// let pr = Pr::new("S", vec![Symbol::t(","), Symbol::n("N")]);
    /// assert_eq!(1, pr.first_len_at(0));
    /// assert_eq!(0, pr.first_len_at(1));
    /// assert_eq!(0, pr.first_len_at(2));
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::t("d"), Symbol::t("e")]);
    /// assert_eq!(0, pr.first_len_at(0));
    /// assert_eq!(2, pr.first_len_at(1));
    /// assert_eq!(1, pr.first_len_at(2));
    /// assert_eq!(0, pr.first_len_at(3));
    /// let pr = Pr::new("S", vec![Symbol::t("c"), Symbol::t("d"), Symbol::t("e")]);
    /// assert_eq!(3, pr.first_len_at(0));
    /// assert_eq!(2, pr.first_len_at(1));
    /// assert_eq!(1, pr.first_len_at(2));
    /// assert_eq!(0, pr.first_len_at(3));
    /// let pr = Pr::new("S", vec![Symbol::t("c"), Symbol::t("d"), Symbol::t("e"), Symbol::n("N")]);
    /// assert_eq!(3, pr.first_len_at(0));
    /// assert_eq!(2, pr.first_len_at(1));
    /// assert_eq!(1, pr.first_len_at(2));
    /// assert_eq!(0, pr.first_len_at(3));
    /// assert_eq!(0, pr.first_len_at(4));
    /// ```
    ///
    pub fn first_len_at(&self, sy_idx: usize) -> usize {
        self.1
            .iter()
            .skip(sy_idx)
            .take_while(|s| {
                matches!(s, Symbol::T(Terminal::Trm(_))) || matches!(s, Symbol::T(Terminal::End))
            })
            .count()
    }

    ///
    /// Calculates whether a next derivation is necessary and possible to get
    /// a first length of k.
    /// If the first_len is already equal or greater than k there is no derivation
    /// necessary.
    /// Else if no non-terminal is contained then a derivation is not possible
    /// Else it returns true.
    ///
    /// ```
    /// use parol::{Pr, Symbol};
    ///
    /// let pr = Pr::new("S", vec![]);
    /// assert!(!pr.is_k_derivable(1), "Empty production - not possible");
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::n("L")]);
    /// assert!(pr.is_k_derivable(1), "k_len == 0 but containing Nt - possible");
    /// let pr = Pr::new("S", vec![Symbol::t(","), Symbol::n("N")]);
    /// assert!(!pr.is_k_derivable(1), "k_len == 1 - not necessary");
    /// assert!(pr.is_k_derivable(2), "k_len == 1 but containing Nt - not necessary");
    /// let pr = Pr::new("S", vec![Symbol::t("d")]);
    /// assert!(!pr.is_k_derivable(1), "k_len == 1 - not necessary");
    /// assert!(!pr.is_k_derivable(2), "k_len == 1, containing no Nt - not possible");
    /// let pr = Pr::new("S", vec![Symbol::t("d"), Symbol::t("e")]);
    /// assert!(!pr.is_k_derivable(1), "k_len == 2 - not necessary");
    /// assert!(!pr.is_k_derivable(2), "k_len == 2 - not necessary");
    /// assert!(!pr.is_k_derivable(3), "k_len == 2, containing no Nt - not possible");
    /// ```
    ///
    pub fn is_k_derivable(&self, k: usize) -> bool {
        // Necessary
        self.first_len() < k &&
        // Possible
        self.1.iter().any(|s| matches!(s, Symbol::N(_)))
    }

    ///
    /// Calculates whether a next derivation is necessary and possible to get
    /// a first length of k at a given symbol offset.
    /// If the first_len_at is already equal or greater than k there is no derivation
    /// necessary.
    /// Else if no non-terminal is contained then a derivation is not possible
    /// Else it returns true.
    ///
    /// ```
    /// use parol::{Pr, Symbol};
    ///
    /// let pr = Pr::new("S", vec![]);
    /// assert!(!pr.is_k_derivable_at(1, 0), "Empty production - not possible");
    /// assert!(!pr.is_k_derivable_at(1, 1), "Empty production, invalid index - not possible");
    /// let pr = Pr::new("S", vec![Symbol::n("N"), Symbol::n("L")]);
    /// assert!(pr.is_k_derivable_at(1, 0), "k_len == 0 but containing Nt - possible");
    /// assert!(pr.is_k_derivable_at(1, 1), "k_len == 0 but containing Nt - possible");
    /// assert!(!pr.is_k_derivable_at(1, 2), "invalid index - not possible");
    /// let pr = Pr::new("S", vec![Symbol::t(","), Symbol::n("N")]);
    /// assert!(!pr.is_k_derivable_at(1, 0), "k_len == 1 - not necessary");
    /// assert!(pr.is_k_derivable_at(2, 0), "k_len == 1 but containing Nt - possible");
    /// assert!(pr.is_k_derivable_at(2, 1), "k_len == 0 but containing Nt - possible");
    /// assert!(!pr.is_k_derivable_at(2, 2), "invalid index - not possible");
    /// let pr = Pr::new("S", vec![Symbol::t("d")]);
    /// assert!(!pr.is_k_derivable_at(1, 0), "k_len == 1 - not necessary");
    /// assert!(!pr.is_k_derivable_at(2, 0), "k_len == 1, containing no Nt - not possible");
    /// assert!(!pr.is_k_derivable_at(1, 1), "invalid index - not possible");
    /// assert!(!pr.is_k_derivable_at(2, 1), "invalid index - not possible");
    /// let pr = Pr::new("S", vec![Symbol::t("d"), Symbol::t("e")]);
    /// assert!(!pr.is_k_derivable_at(1, 0), "k_len == 2 - not necessary");
    /// assert!(!pr.is_k_derivable_at(2, 0), "k_len == 2 - not necessary");
    /// assert!(!pr.is_k_derivable_at(3, 0), "k_len == 2, containing no Nt - not possible");
    /// assert!(!pr.is_k_derivable_at(1, 1), "k_len == 1 - not necessary");
    /// assert!(!pr.is_k_derivable_at(2, 1), "k_len == 1 - not possible");
    /// assert!(!pr.is_k_derivable_at(3, 1), "invalid index - not possible");
    /// ```
    ///
    pub fn is_k_derivable_at(&self, k: usize, sy_idx: usize) -> bool {
        // Necessary
        self.first_len_at(sy_idx) < k &&
        // Possible
        self.1.iter().skip(sy_idx).any(|s| matches!(s, Symbol::N(_)))
    }

    fn is_allowed_symbol(s: &Symbol) -> bool {
        !(matches!(s, Symbol::T(Terminal::Eps)))
    }
    pub fn is_valid_index(&self, idx: usize) -> bool {
        idx < self.1.len()
    }
    pub fn try_get_rhs_symbol(&self, sy_index: usize) -> Option<&Symbol> {
        if self.is_valid_index(sy_index) {
            Some(&self[sy_index])
        } else {
            None
        }
    }
}

impl Index<usize> for Pr {
    type Output = Symbol;

    fn index(&self, idx: usize) -> &Self::Output {
        if idx == 0 {
            &self.0
        } else {
            &self.1[idx]
        }
    }
}