1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
//!
//! # par_iter_sync: Parallel Iterator With Sequential Output
//!
//! Crate like `rayon` do not offer synchronization mechanism.
//! This crate provides easy mixture of parallelism and synchronization.
//! Execute tasks in concurrency with synchronization at any steps.
//!
//! Consider the case where multiple threads share a cache which can be read
//! only after prior tasks have written to it (e.g., reads of task 4 depends
//! on writes of task 1-4).
//!
//! Using `IntoParallelIteratorSync` trait
//!```
//! // in concurrency: task1 write | task2 write | task3 write | task4 write
//! // \_____________\_____________\_____________\
//! // task4 read depends on task 1-4 write \___________
//! // \
//! // in concurrency: | task2 read | task3 read | task4 read
//!
//! use par_iter_sync::IntoParallelIteratorSync;
//! use std::sync::{Arc, Mutex};
//! use std::collections::HashSet;
//!
//! // there are 100 tasks
//! let tasks = 0..100;
//!
//! // an in-memory cache for integers
//! let cache: Arc<Mutex<HashSet<i32>>> = Arc::new(Mutex::new(HashSet::new()));
//! let cache_clone = cache.clone();
//!
//! // iterate through tasks
//! tasks.into_par_iter_sync(move |task_number| {
//!
//! // writes cache (write the integer in cache), in parallel
//! cache.lock().unwrap().insert(task_number);
//! // return the task number to the next iterator
//! Ok(task_number)
//!
//! }).into_par_iter_sync(move |task_number| { // <- synced to sequential order
//!
//! // reads
//! assert!(cache_clone.lock().unwrap().contains(&task_number));
//! Ok(())
//! // append a for each to actually run the whole chain
//! }).for_each(|_| ());
//!```
//!
//! ## Sequential Consistency
//! The output order is guaranteed to be the same as the upstream iterator,
//! but the execution order is not sequential.
//!
//! ## Examples
//!
//! ### Mix Syncing and Parallelism By Chaining
//! ```
//! use par_iter_sync::IntoParallelIteratorSync;
//!
//! (0..100).into_par_iter_sync(|i| {
//! Ok(i) // <~ async execution
//! }).into_par_iter_sync(|i| { // <- sync order
//! Ok(i) // <~async execution
//! }).into_par_iter_sync(|i| { // <- sync order
//! Ok(i) // <~async execution
//! }).for_each(|x| ()); // <- sync order
//! ```
//!
//! ### Use `std::iter::IntoIterator` interface
//! ```
//! use par_iter_sync::IntoParallelIteratorSync;
//!
//! let mut count = 0;
//!
//! // for loop
//! for i in (0..100).into_par_iter_sync(|i| Ok(i)) {
//! assert_eq!(i, count);
//! count += 1;
//! }
//!
//! // sum
//! let sum: i32 = (1..=100).into_par_iter_sync(|i| Ok(i)).sum();
//!
//! // take and collect
//! let results: Vec<i32> = (0..10).into_par_iter_sync(|i| Ok(i)).take(5).collect();
//!
//! assert_eq!(sum, 5050);
//! assert_eq!(results, vec![0, 1, 2, 3, 4])
//! ```
//!
//! ### Closure Captures Variables
//! Variables captured are cloned to each threads automatically.
//! ```
//! use par_iter_sync::IntoParallelIteratorSync;
//! use std::sync::Arc;
//!
//! // use `Arc` to save RAM
//! let resource_captured = Arc::new(vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3]);
//! let len = resource_captured.len();
//!
//! let result_iter = (0..len).into_par_iter_sync(move |i| {
//! // `resource_captured` is moved into the closure
//! // and cloned to worker threads.
//! let read_from_resource = resource_captured.get(i).unwrap();
//! Ok(*read_from_resource)
//! });
//!
//! // the result is produced in sequential order
//! let collected: Vec<i32> = result_iter.collect();
//! assert_eq!(collected, vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3])
//! ```
//!
//! ### Fast Fail During Exception
//! The iterator stops once the inner function returns an `Err`.
//! ```
//! use par_iter_sync::IntoParallelIteratorSync;
//! use std::sync::Arc;
//! use log::warn;
//!
//! /// this function returns `Err` when it reads 1000
//! fn error_at_1000(n: i32) -> Result<i32, ()> {
//! if n == 1000 {
//! // you may log this error
//! warn!("Some Error Occurs");
//! Err(())
//! } else {
//! Ok(n)
//! }
//! }
//!
//! let results: Vec<i32> = (0..10000).into_par_iter_sync(move |a| {
//! Ok(a)
//! }).into_par_iter_sync(move |a| {
//! // error at 1000
//! error_at_1000(a)
//! }).into_par_iter_sync(move |a| {
//! Ok(a)
//! }).collect();
//!
//! let expected: Vec<i32> = (0..1000).collect();
//! assert_eq!(results, expected)
//! ```
//!
//! #### You may choose to skip error
//! If you do not want to stop on `Err`, this is a workaround.
//! ```
//! use par_iter_sync::IntoParallelIteratorSync;
//! use std::sync::Arc;
//!
//! let results: Vec<Result<i32, ()>> = (0..5).into_par_iter_sync(move |n| {
//! // error at 3, but skip
//! if n == 3 {
//! Ok(Err(()))
//! } else {
//! Ok(Ok(n))
//! }
//! }).collect();
//!
//! assert_eq!(results, vec![Ok(0), Ok(1), Ok(2), Err(()), Ok(4)])
//! ```
//!
//! ## Implementation Note
//!
//! ### Output Buffering
//! - Each worker use a synced single-producer mpsc channel to buffer outputs.
//! So, when a thread is waiting for its turn to get polled, it does not
//! get blocked. The channel size is hard-coded to 10 for each thread.
//! - The number of threads equals to the number of logical cores.
//!
//! ### Synchronization Mechanism
//! - When each thread fetch a task, it registers its thread ID (`thread_number`)
//! and the task ID (`task_number`) into a mpsc channel.
//! - When `next()` is called, the consumer fetch from the task registry
//! (`task_order`) the next thread ID and task ID.
//! It then receives from the channel of that thread, and checks whether
//! the current task (`current`) matches the task ID to ensure that no thread
//! has run into exception.
//! - If `next()` detect that some thread has not produced result due to exception,
//! it calls `kill()`, which stop threads from fetching new tasks,
//! flush remaining tasks, and joining the worker threads.
//!
//! ### Error handling and Dropping
//! - When any exception occurs, stop producers from fetching new task.
//! - Before dropping the structure, stop all producers from fetching tasks,
//! flush all remaining tasks, and join all threads..
//!
use std::iter::Enumerate;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::{channel, sync_channel, Receiver, Sender};
use std::sync::{Arc, Mutex};
use std::thread;
use std::thread::JoinHandle;
use num_cpus;
const MAX_SIZE_FOR_THREAD: usize = 10;
pub trait IntoParallelIteratorSync<R, T, TL, F>
where
F: Send + Clone + 'static + Fn(T) -> Result<R, ()>,
T: Send,
TL: Send + IntoIterator<Item = T>,
<TL as IntoIterator>::IntoIter: Send + 'static,
R: Send,
{
///
/// # Usage
///
/// This method executes `func` in parallel.
///
/// The `func` is a closure that takes the returned elements
/// from the upstream iterator as argument and returns
/// some `Result(R, ())`.
///
/// This iterator would return type `R` when it gets `Ok(R)`
/// and stops when it gets an `Err(())`.
///
/// ## Example
///
/// ```
/// use par_iter_sync::IntoParallelIteratorSync;
///
/// let mut count = 0;
///
/// // for loop
/// for i in (0..100).into_par_iter_sync(|i| Ok(i)) {
/// assert_eq!(i, count);
/// count += 1;
/// }
///
/// // sum
/// let sum: i32 = (1..=100).into_par_iter_sync(|i| Ok(i)).sum();
///
/// // take and collect
/// let results: Vec<i32> = (0..10).into_par_iter_sync(|i| Ok(i)).take(5).collect();
///
/// assert_eq!(sum, 5050);
/// assert_eq!(results, vec![0, 1, 2, 3, 4])
/// ```
///
/// If the result is not polled using `next()`,
/// the parallel execution will stop and wait.
///
/// ## Sequential Consistency
/// The output order is guaranteed to be the same as the provided iterator.
///
/// See [crate] module-level doc.
///
fn into_par_iter_sync(self, func: F) -> ParIter<R>;
}
impl<R, T, TL, F> IntoParallelIteratorSync<R, T, TL, F> for TL
where
F: Send + Clone + 'static + Fn(T) -> Result<R, ()>,
T: Send,
TL: Send + IntoIterator<Item = T>,
<TL as IntoIterator>::IntoIter: Send + 'static,
R: Send + 'static,
{
fn into_par_iter_sync(self, func: F) -> ParIter<R>
{
ParIter::new(self, func)
}
}
/// iterate through blocks according to array index.
pub struct ParIter<R> {
/// Result receivers, one for each worker thread
receivers: Vec<Receiver<R>>,
/// Receiver<(task_number, thread)>
task_order: Receiver<(usize, usize)>,
/// current task number
current: usize,
/// handles to join worker threads
worker_thread: Option<Vec<JoinHandle<()>>>,
/// flag to stop workers from fetching new tasks
iterator_stopper: Arc<AtomicBool>,
/// indicate that workers have all been killed
is_killed: bool,
}
impl<R> ParIter<R>
where
R: Send + 'static,
{
///
/// the worker threads are dispatched in this `new` constructor!
///
pub fn new<T, TL, F>(tasks: TL, task_executor: F) -> Self
where
F: Send + Clone + 'static + Fn(T) -> Result<R, ()>,
T: Send,
TL: Send + IntoIterator<Item = T>,
<TL as IntoIterator>::IntoIter: Send + 'static,
{
let cpus = num_cpus::get();
let iterator_stopper = Arc::new(AtomicBool::new(false));
// worker master
let (task_register, task_order) = channel();
let tasks = Arc::new(Mutex::new(tasks.into_iter().enumerate()));
let mut handles = Vec::with_capacity(cpus);
let mut receivers = Vec::with_capacity(cpus);
for thread_number in 0..cpus {
let (sender, receiver) = sync_channel(MAX_SIZE_FOR_THREAD);
let task = tasks.clone();
let register = task_register.clone();
let iterator_stopper = iterator_stopper.clone();
let task_executor = task_executor.clone();
// workers
let handle = thread::spawn(move || {
loop {
if iterator_stopper.load(Ordering::SeqCst) {
break;
}
match get_task(&task, ®ister, thread_number) {
// finish
None => break,
Some(task) => match task_executor(task) {
Ok(blk) => {
sender.send(blk).unwrap();
}
Err(_) => {
iterator_stopper.fetch_or(true, Ordering::SeqCst);
break;
}
},
}
}
});
receivers.push(receiver);
handles.push(handle);
}
ParIter {
receivers,
task_order,
current: 0,
worker_thread: Some(handles),
iterator_stopper,
is_killed: false,
}
}
}
impl<R> ParIter<R> {
///
/// stop workers from fetching new tasks, and flush remaining works
/// to prevent blocking.
///
pub fn kill(&mut self) {
if !self.is_killed {
// stop threads from getting new tasks
self.iterator_stopper.fetch_or(true, Ordering::SeqCst);
// flush the remaining tasks in the channel
loop {
let _ = match self.task_order.recv() {
Ok((_, thread_number)) => self.receivers.get(thread_number).unwrap().recv(),
// all workers have stopped
Err(_) => break,
};
}
// loop break only when task_order is dropped (all workers have stopped)
self.is_killed = true;
}
}
}
///
/// A helper function that locks tasks,
/// register thread_number and task_number
/// before releasing tasks lock.
///
fn get_task<T, TL>(
tasks: &Arc<Mutex<Enumerate<TL>>>,
register: &Sender<(usize, usize)>,
thread_number: usize,
) -> Option<T>
where
T: Send,
TL: Iterator<Item = T>,
{
// lock task list
let mut task = tasks.lock().unwrap();
let next_task = task.next();
// register task stealing
match next_task {
Some((task_number, task)) => {
register.send((task_number, thread_number)).unwrap();
Some(task)
}
None => None,
}
}
impl<R> Iterator for ParIter<R> {
type Item = R;
///
/// The output API, use next to fetch result from the iterator.
///
fn next(&mut self) -> Option<Self::Item> {
if self.is_killed {
return None;
}
match self.task_order.recv() {
Ok((task_number, thread_number)) => {
// Some threads might have stopped first.
// while the remaining working threads produces wrong order.
if task_number != self.current {
self.kill();
return None;
}
match self.receivers.get(thread_number).unwrap().recv() {
Ok(block) => {
self.current += 1;
Some(block)
}
// some worker have stopped
Err(_) => {
self.kill();
None
}
}
}
// all workers have stopped
Err(_) => None,
}
}
}
impl<R> ParIter<R> {
///
/// Join worker threads. This can be only called once.
/// Otherwise it results in panic.
/// This is automatically called in `join()`
///
fn join(&mut self) {
for handle in self.worker_thread.take().unwrap() {
handle.join().unwrap()
}
}
}
impl<R> Drop for ParIter<R> {
///
/// Stop worker threads, join the threads.
///
fn drop(&mut self) {
self.kill();
self.join();
}
}
#[cfg(test)]
mod test_par_iter {
use crate::IntoParallelIteratorSync;
fn error_at_1000(test_vec: &Vec<i32>, a: i32) -> Result<i32, ()> {
let n = test_vec.get(a as usize).unwrap().to_owned();
if n == 1000 {
Err(())
} else {
Ok(n)
}
}
#[test]
fn par_iter() {
}
#[test]
fn par_iter_test_exception() {
let resource_captured = vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3];
let results_expected = vec![3, 1, 4, 1];
// if Err(()) is returned, the iterator stops early
let results: Vec<i32> = (0..resource_captured.len()).into_par_iter_sync(move |a| {
let n = resource_captured.get(a).unwrap().to_owned();
if n == 5 {
Err(())
} else {
Ok(n)
}
}).collect();
assert_eq!(results, results_expected)
}
///
/// The iterators can be chained.
///
/// par_iter_0 -> owned by -> par_iter_1 -> owned by -> par_iter_2
///
/// par_iter_1 exception at height 1000,
///
/// the final output should contain 0..1000;
///
#[test]
fn par_iter_chained_exception() {
let resource_captured: Vec<i32> = (0..10000).collect();
let resource_captured_1 = resource_captured.clone();
let resource_captured_2 = resource_captured.clone();
let results_expected: Vec<i32> = (0..1000).collect();
let results: Vec<i32> = (0..resource_captured.len()).into_par_iter_sync(move |a| {
Ok(resource_captured.get(a).unwrap().to_owned())
}).into_par_iter_sync(move |a| {
error_at_1000(&resource_captured_1, a)
}).into_par_iter_sync(move |a| {
Ok(resource_captured_2.get(a as usize).unwrap().to_owned())
}).collect();
assert_eq!(results, results_expected)
}
///
/// par_iter_0 -> owned by -> par_iter_1 -> owned by -> par_iter_2
///
/// par_iter_2 exception at height 1000,
///
/// the final output should contain 0..1000;
///
#[test]
fn par_iter_chained_exception_1() {
let resource_captured: Vec<i32> = (0..10000).collect();
let resource_captured_1 = resource_captured.clone();
let resource_captured_2 = resource_captured.clone();
let results_expected: Vec<i32> = (0..1000).collect();
let results: Vec<i32> = (0..resource_captured.len()).into_par_iter_sync(move |a| {
Ok(resource_captured.get(a).unwrap().to_owned())
}).into_par_iter_sync(move |a| {
Ok(resource_captured_2.get(a as usize).unwrap().to_owned())
}).into_par_iter_sync(move |a| {
error_at_1000(&resource_captured_1, a)
}).collect();
assert_eq!(results, results_expected)
}
///
/// par_iter_0 -> owned by -> par_iter_1 -> owned by -> par_iter_2
///
/// par_iter_0 exception at height 1000,
///
/// the final output should contain 0..1000;
///
#[test]
fn par_iter_chained_exception_2() {
let resource_captured: Vec<i32> = (0..10000).collect();
let resource_captured_1 = resource_captured.clone();
let resource_captured_2 = resource_captured.clone();
let results_expected: Vec<i32> = (0..1000).collect();
let results: Vec<i32> = (0..resource_captured.len()).into_par_iter_sync(move |a| {
error_at_1000(&resource_captured_1, a as i32)
}).into_par_iter_sync(move |a| {
Ok(resource_captured.get(a as usize).unwrap().to_owned())
}).into_par_iter_sync(move |a| {
Ok(resource_captured_2.get(a as usize).unwrap().to_owned())
}).collect();
assert_eq!(results, results_expected)
}
#[test]
fn test_break() {
let mut count = 0;
for i in (0..20).into_par_iter_sync(|a| Ok(a)) {
if i == 10 {
break;
}
count += 1;
}
assert_eq!(count, 10)
}
}