1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
use super::Decode;
use crate::flat::zigzag;
use super::Error;
#[derive(Debug)]
pub struct Decoder<'b> {
pub buffer: &'b [u8],
pub used_bits: i64,
pub pos: usize,
}
impl<'b> Decoder<'b> {
pub fn new(bytes: &'b [u8]) -> Decoder {
Decoder {
buffer: bytes,
pos: 0,
used_bits: 0,
}
}
/// Decode any type that implements [`Decode`].
pub fn decode<T: Decode<'b>>(&mut self) -> Result<T, Error> {
T::decode(self)
}
/// Decode an integer of any size.
/// This is byte alignment agnostic.
/// First we decode the next 8 bits of the buffer.
/// We take the 7 least significant bits as the 7 least significant bits of
/// the current unsigned integer. If the most significant bit of the 8
/// bits is 1 then we take the next 8 and repeat the process above,
/// filling in the next 7 least significant bits of the unsigned integer and
/// so on. If the most significant bit was instead 0 we stop decoding
/// any more bits. Finally we use zigzag to convert the unsigned integer
/// back to a signed integer.
pub fn integer(&mut self) -> Result<isize, Error> {
Ok(zigzag::to_isize(self.word()?))
}
/// Decode an integer of 128 bits size.
/// This is byte alignment agnostic.
/// First we decode the next 8 bits of the buffer.
/// We take the 7 least significant bits as the 7 least significant bits of
/// the current unsigned integer. If the most significant bit of the 8
/// bits is 1 then we take the next 8 and repeat the process above,
/// filling in the next 7 least significant bits of the unsigned integer and
/// so on. If the most significant bit was instead 0 we stop decoding
/// any more bits. Finally we use zigzag to convert the unsigned integer
/// back to a signed integer.
pub fn big_integer(&mut self) -> Result<i128, Error> {
Ok(zigzag::to_i128(self.big_word()?))
}
/// Decode a single bit of the buffer to get a bool.
/// We mask out a single bit of the buffer based on used bits.
/// and check if it is 0 for false or 1 for true.
// TODO: use bit() instead of this custom implementation.
pub fn bool(&mut self) -> Result<bool, Error> {
let current_byte = self.buffer[self.pos];
let b = 0 != (current_byte & (128 >> self.used_bits));
self.increment_buffer_by_bit();
Ok(b)
}
/// Decode a byte from the buffer.
/// This byte alignment agnostic.
/// We use the next 8 bits in the buffer and return the resulting byte.
pub fn u8(&mut self) -> Result<u8, Error> {
self.bits8(8)
}
/// Decode a byte array.
/// Decodes a filler to byte align the buffer,
/// then decodes the next byte to get the array length up to a max of 255.
/// We decode bytes equal to the array length to form the byte array.
/// If the following byte for array length is not 0 we decode it and repeat
/// above to continue decoding the byte array. We stop once we hit a
/// byte array length of 0. If array length is 0 for first byte array
/// length the we return a empty array.
pub fn bytes(&mut self) -> Result<Vec<u8>, Error> {
self.filler()?;
self.byte_array()
}
/// Decode a 32 bit char.
/// This is byte alignment agnostic.
/// First we decode the next 8 bits of the buffer.
/// We take the 7 least significant bits as the 7 least significant bits of
/// the current unsigned integer. If the most significant bit of the 8
/// bits is 1 then we take the next 8 and repeat the process above,
/// filling in the next 7 least significant bits of the unsigned integer and
/// so on. If the most significant bit was instead 0 we stop decoding
/// any more bits.
pub fn char(&mut self) -> Result<char, Error> {
let character = self.word()? as u32;
char::from_u32(character).ok_or(Error::DecodeChar(character))
}
// TODO: Do we need this?
pub fn string(&mut self) -> Result<String, Error> {
let mut s = String::new();
while self.bit()? {
s += &self.char()?.to_string();
}
Ok(s)
}
/// Decode a string.
/// Convert to byte array and then use byte array decoding.
/// Decodes a filler to byte align the buffer,
/// then decodes the next byte to get the array length up to a max of 255.
/// We decode bytes equal to the array length to form the byte array.
/// If the following byte for array length is not 0 we decode it and repeat
/// above to continue decoding the byte array. We stop once we hit a
/// byte array length of 0. If array length is 0 for first byte array
/// length the we return a empty array.
pub fn utf8(&mut self) -> Result<String, Error> {
// TODO: Better Error Handling
String::from_utf8(Vec::<u8>::decode(self)?).map_err(Error::from)
}
/// Decodes a filler of max one byte size.
/// Decodes bits until we hit a bit that is 1.
/// Expects that the 1 is at the end of the current byte in the buffer.
pub fn filler(&mut self) -> Result<(), Error> {
while self.zero()? {}
Ok(())
}
/// Decode a word of any size.
/// This is byte alignment agnostic.
/// First we decode the next 8 bits of the buffer.
/// We take the 7 least significant bits as the 7 least significant bits of
/// the current unsigned integer. If the most significant bit of the 8
/// bits is 1 then we take the next 8 and repeat the process above,
/// filling in the next 7 least significant bits of the unsigned integer and
/// so on. If the most significant bit was instead 0 we stop decoding
/// any more bits.
pub fn word(&mut self) -> Result<usize, Error> {
let mut leading_bit = 1;
let mut final_word: usize = 0;
let mut shl: usize = 0;
// continue looping if lead bit is 1 which is 128 as a u8 otherwise exit
while leading_bit > 0 {
let word8 = self.bits8(8)?;
let word7 = word8 & 127;
final_word |= (word7 as usize) << shl;
shl += 7;
leading_bit = word8 & 128;
}
Ok(final_word)
}
/// Decode a word of 128 bits size.
/// This is byte alignment agnostic.
/// First we decode the next 8 bits of the buffer.
/// We take the 7 least significant bits as the 7 least significant bits of
/// the current unsigned integer. If the most significant bit of the 8
/// bits is 1 then we take the next 8 and repeat the process above,
/// filling in the next 7 least significant bits of the unsigned integer and
/// so on. If the most significant bit was instead 0 we stop decoding
/// any more bits.
pub fn big_word(&mut self) -> Result<u128, Error> {
let mut leading_bit = 1;
let mut final_word: u128 = 0;
let mut shl: u128 = 0;
// continue looping if lead bit is 1 which is 128 as a u8 otherwise exit
while leading_bit > 0 {
let word8 = self.bits8(8)?;
let word7 = word8 & 127;
final_word |= (word7 as u128) << shl;
shl += 7;
leading_bit = word8 & 128;
}
Ok(final_word)
}
/// Decode a list of items with a decoder function.
/// This is byte alignment agnostic.
/// Decode a bit from the buffer.
/// If 0 then stop.
/// Otherwise we decode an item in the list with the decoder function passed
/// in. Then decode the next bit in the buffer and repeat above.
/// Returns a list of items decoded with the decoder function.
pub fn decode_list_with<T, F>(&mut self, decoder_func: F) -> Result<Vec<T>, Error>
where
F: Copy + FnOnce(&mut Decoder) -> Result<T, Error>,
{
let mut vec_array: Vec<T> = Vec::new();
while self.bit()? {
vec_array.push(decoder_func(self)?)
}
Ok(vec_array)
}
pub fn decode_list_with_debug<T, F>(
&mut self,
decoder_func: F,
state_log: &mut Vec<String>,
) -> Result<Vec<T>, Error>
where
F: Copy + FnOnce(&mut Decoder, &mut Vec<String>) -> Result<T, Error>,
{
let mut vec_array: Vec<T> = Vec::new();
while self.bit()? {
vec_array.push(decoder_func(self, state_log)?)
}
Ok(vec_array)
}
/// Decode the next bit in the buffer.
/// If the bit was 0 then return true.
/// Otherwise return false.
/// Throws EndOfBuffer error if used at the end of the array.
fn zero(&mut self) -> Result<bool, Error> {
let current_bit = self.bit()?;
Ok(!current_bit)
}
/// Decode the next bit in the buffer.
/// If the bit was 1 then return true.
/// Otherwise return false.
/// Throws EndOfBuffer error if used at the end of the array.
fn bit(&mut self) -> Result<bool, Error> {
if self.pos >= self.buffer.len() {
return Err(Error::EndOfBuffer);
}
let b = self.buffer[self.pos] & (128 >> self.used_bits) > 0;
self.increment_buffer_by_bit();
Ok(b)
}
/// Decode a byte array.
/// Throws a BufferNotByteAligned error if the buffer is not byte aligned
/// Decodes the next byte to get the array length up to a max of 255.
/// We decode bytes equal to the array length to form the byte array.
/// If the following byte for array length is not 0 we decode it and repeat
/// above to continue decoding the byte array. We stop once we hit a
/// byte array length of 0. If array length is 0 for first byte array
/// length the we return a empty array.
fn byte_array(&mut self) -> Result<Vec<u8>, Error> {
if self.used_bits != 0 {
return Err(Error::BufferNotByteAligned);
}
self.ensure_bytes(1)?;
let mut blk_len = self.buffer[self.pos];
self.pos += 1;
let mut blk_array: Vec<u8> = Vec::new();
while blk_len != 0 {
self.ensure_bytes(blk_len as usize + 1)?;
let decoded_array = &self.buffer[self.pos..self.pos + blk_len as usize];
blk_array.extend(decoded_array);
self.pos += blk_len as usize;
blk_len = self.buffer[self.pos];
self.pos += 1
}
Ok(blk_array)
}
/// Decode up to 8 bits.
/// This is byte alignment agnostic.
/// If num_bits is greater than the 8 we throw an IncorrectNumBits error.
/// First we decode the next num_bits of bits in the buffer.
/// If there are less unused bits in the current byte in the buffer than
/// num_bits, then we decode the remaining bits from the most
/// significant bits in the next byte in the buffer. Otherwise we decode
/// the unused bits from the current byte. Returns the decoded value up
/// to a byte in size.
pub fn bits8(&mut self, num_bits: usize) -> Result<u8, Error> {
if num_bits > 8 {
return Err(Error::IncorrectNumBits);
}
self.ensure_bits(num_bits)?;
let unused_bits = 8 - self.used_bits as usize;
let leading_zeroes = 8 - num_bits;
let r = (self.buffer[self.pos] << self.used_bits as usize) >> leading_zeroes;
let x = if num_bits > unused_bits {
r | (self.buffer[self.pos + 1] >> (unused_bits + leading_zeroes))
} else {
r
};
self.drop_bits(num_bits);
Ok(x)
}
/// Ensures the buffer has the required bytes passed in by required_bytes.
/// Throws a NotEnoughBytes error if there are less bytes remaining in the
/// buffer than required_bytes.
fn ensure_bytes(&mut self, required_bytes: usize) -> Result<(), Error> {
if required_bytes as isize > self.buffer.len() as isize - self.pos as isize {
Err(Error::NotEnoughBytes(required_bytes))
} else {
Ok(())
}
}
/// Ensures the buffer has the required bits passed in by required_bits.
/// Throws a NotEnoughBits error if there are less bits remaining in the
/// buffer than required_bits.
fn ensure_bits(&mut self, required_bits: usize) -> Result<(), Error> {
if required_bits as isize
> (self.buffer.len() as isize - self.pos as isize) * 8 - self.used_bits as isize
{
Err(Error::NotEnoughBits(required_bits))
} else {
Ok(())
}
}
/// Increment buffer by num_bits.
/// If num_bits + used bits is greater than 8,
/// then increment position by (num_bits + used bits) / 8
/// Use the left over remainder as the new amount of used bits.
fn drop_bits(&mut self, num_bits: usize) {
let all_used_bits = num_bits as i64 + self.used_bits;
self.used_bits = all_used_bits % 8;
self.pos += all_used_bits as usize / 8;
}
/// Increment used bits by 1.
/// If all 8 bits are used then increment buffer position by 1.
fn increment_buffer_by_bit(&mut self) {
if self.used_bits == 7 {
self.pos += 1;
self.used_bits = 0;
} else {
self.used_bits += 1;
}
}
}