1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#![cfg_attr(docsrs, feature(doc_cfg))]

//! Distributed computation library for Rust.
//!
//! Paladin aims to simplify the challenge of writing distributed programs. It
//! provides a declarative API, allowing developers to articulate their
//! distributed programs clearly and concisely, without thinking about the
//! complexities of distributed systems programming.
//!
//! Features:
//! - **Declarative API**: Express distributed computations with clarity and
//!   ease.
//! - **Automated Distribution**: Paladin’s runtime seamlessly handles task
//!   distribution and execution across the cluster.
//! - **Simplified Development**: Concentrate on the program logic, leaving the
//!   complexities of distributed systems to Paladin.
//! - **Infrastructure Agnostic**: Paladin is generic over its messaging backend
//!   and infrastructure provider. Bring your own infra!
//!
//! # How to use Paladin
//!
//! When writing your programs, you will interact with two core APIs,
//! [`Operation`](crate::operation::Operation)s and
//! [`Directive`](crate::directive::Directive)s. You will define your
//! distributed computations in terms of
//! [`Operation`](crate::operation::Operation)s, and construct your programs
//! using Paladin's provided [`Directive`](crate::directive::Directive)s.
//!
//! In general, Paladin assumes that distributed programs will fundamentally
//! operate over a stream or async-iterator-like data structure. In particular,
//! Paladin's [`Directive`](crate::directive::Directive) API operates over
//! [functorial](crate::directive::Functor) or
//! [foldable](crate::directive::Foldable) data structures, providing methods
//! [`map`](crate::directive::Directive::map) and
//! [`fold`](crate::directive::Directive::fold), respectively. This
//! generalization allows Paladin to support a wide variety of parallel data
//! structures. Paladin provides one such data structure out of the box,
//! [`IndexedStream`](crate::directive::indexed_stream::IndexedStream).
//! [`IndexedStream`](crate::directive::indexed_stream::IndexedStream)
//! implements both the [`Functor`](crate::directive::Functor) and
//! [`Foldable`](crate::directive::Foldable) traits, and as such should be able
//! to handle any distributed algorithm that can be expressed in terms of
//! [`map`](crate::directive::Directive::map) and
//! [`fold`](crate::directive::Directive::fold). We recommend using
//! [`IndexedStream`](crate::directive::indexed_stream::IndexedStream) for all
//! your programs, as it has been highly optimized for parallelism, although
//! of course you are free to define your own.
//!
//! ## Defining Operations
//!
//! Operations are the semantic building blocks of your system. By implementing
//! [`Operation`](crate::operation::Operation) for a type, it can be given to
//! [`Directive`](crate::directive::Directive)s and remotely executed.
//!
//! ```
//! use paladin::operation::{Operation, Result};
//! # use paladin::opkind_derive::OpKind;
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct FibAt;
//!
//! impl Operation for FibAt {
//!     type Input = u64;
//!     type Output = u64;
//! #    type Kind = MyOps;
//!   
//!     fn execute(&self, input: Self::Input) -> Result<Self::Output> {
//!         match input {
//!             0 => Ok(0),
//!             1 => Ok(1),
//!             _ => {
//!                 let mut a = 0;
//!                 let mut b = 1;
//!                 for _ in 2..=input {
//!                     let temp = a;
//!                     a = b;
//!                     b = temp + b;
//!                 }
//!                 Ok(b)
//!             }
//!         }
//!     }
//! }
//!
//! # #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! # enum MyOps {
//! #   FibAt(FibAt),
//! # }
//! # fn main() {
//! assert_eq!(FibAt.execute(10).unwrap(), 55);
//! # }
//! ```
//!
//! ### Operation Registry
//!
//! To enable remote machines to execute your operations, you must declare a
//! registry of all available operations. This ensures remote executors can
//! deserialize and execute them correctly. Paladin provides a macro that wires
//! up all the necessary machinery on your registry. Registries must be declared
//! as an enum where the variants are single tuple structs containing the
//! operation.
//!
//! ```
//! use paladin::{operation::{Operation, Result}, opkind_derive::OpKind};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct FibAt;
//!
//! impl Operation for FibAt {
//!     // ...
//! #    type Input = u64;
//! #    type Output = u64;
//!     // Associate the operation with the registry type.
//!     type Kind = MyOps;
//!     // ...
//! #  
//! #    fn execute(&self, input: Self::Input) -> Result<Self::Output> {
//! #        match input {
//! #            0 => Ok(0),
//! #            1 => Ok(1),
//! #            _ => {
//! #                let mut a = 0;
//! #                let mut b = 1;
//! #                for _ in 2..=input {
//! #                    let temp = a;
//! #                    a = b;
//! #                    b = temp + b;
//! #                }
//! #                Ok(b)
//! #            }
//! #        }
//! #    }
//! }
//!
//! // Declare the registry.
//! #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! enum MyOps {
//!     FibAt(FibAt),
//! }
//! ```
//!
//! ## Constructing a program
//!
//! Once operations have been defined, they can be plugged into Paladin's
//! [`Directive`](crate::directive::Directive)s to construct a distributed
//! program.
//!
//! ```
//! # use paladin::{operation::{Operation, Result}, opkind_derive::OpKind};
//! # use serde::{Deserialize, Serialize};
//! #
//! # #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! # struct FibAt;
//! #
//! # impl Operation for FibAt {
//! #    type Input = u64;
//! #    type Output = u64;
//! #    type Kind = MyOps;
//! #  
//! #    fn execute(&self, input: Self::Input) -> Result<Self::Output> {
//! #        match input {
//! #            0 => Ok(0),
//! #            1 => Ok(1),
//! #            _ => {
//! #                let mut a = 0;
//! #                let mut b = 1;
//! #                for _ in 2..=input {
//! #                    let temp = a;
//! #                    a = b;
//! #                    b = temp + b;
//! #                }
//! #                Ok(b)
//! #            }
//! #        }
//! #    }
//! # }
//! #
//! # #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! # enum MyOps {
//! #    FibAt(FibAt),
//! #    Sum(Sum),
//! # }
//! #
//! use paladin::{
//!     operation::Monoid,
//!     directive::{indexed_stream::IndexedStream, Directive},
//!     runtime::Runtime,
//! };
//!
//! // Define a Sum monoid.
//! # #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct Sum;
//! impl Monoid for Sum {
//!     type Elem = u64;
//!     type Kind = MyOps;
//!
//!     fn combine(&self, a: Self::Elem, b: Self::Elem) -> Result<Self::Elem> {
//!        Ok(a + b)
//!     }
//!
//!     fn empty(&self) -> Self::Elem {
//!        0
//!     }
//! }
//!
//! #[tokio::main]
//! async fn main() -> anyhow::Result<()> {
//!     let runtime = Runtime::in_memory().await.unwrap();
//!     let stream = IndexedStream::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
//!     // Compute the fibonacci number at each element in the stream with our
//!     // previously declared `FibAt` operation.
//!     let fibs = stream.map(FibAt);
//!     // Sum the fibonacci numbers.
//!     let sum = fibs.fold(Sum);
//!
//!     // Run the computation.
//!     let result = sum.run(&runtime).await;
//!
//!     // Close the runtime
//!     runtime.close().await?;
//!
//!     assert_eq!(result?, 143);
//! #   Ok(())
//! }
//! ```
//!
//! In this example program, we define an algorithm for computing the fibonacci
//! number at each element in a stream, and then summing the results. Behind the
//! scenes, Paladin will distribute the computations across the cluster and
//! return the result back to the main thread. Note that in this example, we're
//! using Paladin's multi-threaded in-memory runtime, which can be useful for
//! testing and debugging. In a real-world setting, one would use a distributed
//! runtime, such as Paladin's AMQP runtime.
//!
//! ## Application and deployment architecture
//!
//! We suggest the following project layout:
//! ```bash
//! ops
//! ├── Cargo.toml
//! └── src
//!    └── lib.rs
//! worker
//! ├── Cargo.toml
//! └── src
//!    └── main.rs
//! leader
//! ├── Cargo.toml
//! └── src
//!    └── main.rs
//! ```
//!
//! Here's a breakdown:
//! - `ops`: A library with your operation definitions and their registry,
//!   shared between `worker` and `leader`.
//! - `worker`: Executes operations on remote machines.
//! - `leader`: Coordinates the distributed computation.
//!
//! For deployment, use one `leader` for multiple `workers`. Currently, only one
//! `leader` deployment is supported. Future versions might offer state
//! persistence for better failover and fault tolerance.
//!
//! ### Worker main
//!
//! Given that virtually all workers will do exactly the same thing, Paladin's
//! worker runtime provides a
//! [`WorkerRuntime::main_loop`](crate::runtime::WorkerRuntime::main_loop). In
//! general, most of your logic should exist in `ops` and `leader`.
pub mod acker;
pub mod channel;
pub mod config;
pub mod contiguous;
pub mod directive;
pub mod operation;
pub mod queue;
pub mod runtime;
pub mod serializer;
pub mod task;
pub mod opkind_derive {
    pub use paladin_opkind_derive::*;
}
pub use async_trait::async_trait;
pub use futures;
pub use tracing;