1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
#![deny(missing_docs)]
#![doc = include_str!("../README.md")]
use std::{
collections::{HashSet, VecDeque},
hash::Hash,
ops::Index,
};
/// Packs `Tile`s (composed of [comparable](Eq) `Symbol`s) into pages (essentially `[Symbol; page_size]`).
/// Returns a vector of “assignments”:
///
/// ```rust
/// # use std::collections::HashSet;
/// # use pagination_packing::overload_and_remove;
/// #
/// // Each lesson focuses on a single sentence, and refers to one page of the vocabulary booklet.
/// let vocabulary: [&[_]; 5] = [
/// &[], // The introductory lesson actually does not contain a sentence.
/// &["little", "lamb"], // "Mary had a little lamb."
/// &["tailor", "rich"], // "My tailor is rich."
/// &["rich", "little", "people"], // "Those rich little people!"
/// &["send", "dress", "tailor"], // "Send your dress to my tailor."
/// ];
/// // Each page of the booklet can contain 4 words of vocabulary.
/// let assignments = overload_and_remove::<_, _, [_]>(&vocabulary, 4);
///
/// let booklet: Vec<HashSet<_>> = assignments
/// .into_iter()
/// .map(|page_assignments| {
/// page_assignments.referenced_tiles(&vocabulary).copied().flatten().collect()
/// })
/// .collect();
/// for (i, page) in booklet.iter().enumerate() {
/// println!("Page {}: {page:?}", i + 1);
/// }
///
/// // Each element of `vocabulary` is fully contained within one of the pages.
/// assert_eq!( // As you can see, we can't find a lesson...
/// vocabulary.iter().find(|&&lesson| {
/// let set = HashSet::from_iter(lesson);
/// // ...such that there isn't a page that the lesson is a subset of.
/// !booklet.iter().any(|page| set.is_subset(page))
/// }),
/// None,
/// );
/// ```
///
/// This algorithm has quadratic complexity (compared to the linear complexity of gluttonous heuristics like “first-fit”), but performs better on many more inputs.
pub fn overload_and_remove<
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
tiles: &C,
page_size: usize,
) -> Vec<AssignedTiles>
where
for<'a> &'a C: IntoIterator,
for<'a> <&'a C as IntoIterator>::IntoIter: ExactSizeIterator, // This gives the C(ollection)'s length.
{
// Sort the tiles by size, which improves the packing algorithm's efficiency.
let mut queue = VecDeque::with_capacity(tiles.into_iter().len());
for i in 0..tiles.into_iter().len() {
queue.insert(
// Note that we want them sorted *largest first*!
// (Ties are broken so that the new element is inserted as late as possible, to avoid moving data too much.)
queue.partition_point(|tile_ref: &TileRef| {
tiles[tile_ref.tile_idx].as_ref().len() >= tiles[i].as_ref().len()
}),
TileRef::new(i),
);
}
let mut assignments: Vec<AssignedTiles> = Vec::new();
while let Some(tile_ref) = queue.pop_front() {
let tile = &tiles[tile_ref.tile_idx];
let best_page_index = assignments
.iter()
.enumerate()
.filter(|(i, _assignment)| tile_ref.is_banned_from(*i))
.fold(
(assignments.len(), tile.as_ref().len() as f64),
|(best_idx, best_rel_size), (i, assignment)| {
let relative_size = assignment.relative_size_of(tile, tiles);
if relative_size < best_rel_size {
(i, relative_size)
} else {
(best_idx, best_rel_size)
}
},
)
.0;
if let Some(best_page) = assignments.get_mut(best_page_index) {
// Add the tile to that page.
best_page.assigned.push(tile_ref);
// If this overloads the page, get it back to normal (if possible).
while best_page.volume(tiles) > page_size {
// Look for a tile minimising "efficiency", i.e. size divided by relative size.
let efficiency = |tile: &Tile| {
(tile.as_ref().len()) as f64 / best_page.relative_size_of(tile, tiles)
};
let [(min_efficiency, (min_idx, _min_tile)), (max_efficiency, (_max_idx, _max_tile))] =
minmax_by_key(
best_page.referenced_tiles(tiles).enumerate(),
|(_i, tile_ref)| efficiency(tile_ref),
)
.expect("Pages should not be empty!");
// Give up if all tiles have the same efficiency.
// All efficiencies are identical if and only if the min is equal to the max.
// FIXME: yikes for float comparison! This threshold is quite arbitrary, too... :/
if max_efficiency - min_efficiency < 0.001 {
break;
}
// Remove the tile with minimal efficiency.
let mut min_tile = best_page.assigned.swap_remove(min_idx);
min_tile.ban_from(best_page_index); // Prevent it from going back into this page, to ensure that the algorithm terminates.
queue.push_back(min_tile); // Push it back into the queue.
}
} else {
// Found nowhere to put this tile, create a new page for it.
assignments.push(AssignedTiles {
assigned: vec![tile_ref],
});
}
}
// Deal with pages still overloaded, by emptying them and re-distributing their tiles.
for page in &mut assignments {
if page.volume(tiles) > page_size {
for tile_ref in page.assigned.drain(..) {
// We are about to re-insert them via first-fit, so sorting the queue by size improves its efficiency.
queue.insert(
queue.partition_point(|other_ref| {
tiles[other_ref.tile_idx].as_ref().len()
>= tiles[tile_ref.tile_idx].as_ref().len()
}),
tile_ref,
);
}
}
}
// Place back any tiles now in the queue via first-fit.
for tile_ref in queue {
let tile = &tiles[tile_ref.tile_idx];
if let Some(page) = assignments
.iter_mut()
.find(|page| page.can_fit(tile, page_size, tiles))
{
page.assigned.push(tile_ref);
} else {
// No page can accomodate this tile? Create a new page.
assignments.push(AssignedTiles {
assigned: vec![tile_ref],
});
}
}
// "Decant" the result.
decant(&mut assignments, tiles, page_size);
// Note that the result does not contain any empty pages.
assignments
}
fn decant<
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
assignments: &mut Vec<AssignedTiles>,
tiles: &C,
page_size: usize,
) {
// "Decanting" is the process of moving all *things* that can fit in a lower index there.
fn decant_on<F: FnMut(&mut AssignedTiles, &mut AssignedTiles)>(
mut try_decanting: F,
assignments: &mut Vec<AssignedTiles>,
) {
// No need to attempt decanting on page #0, as there are no pages to decant to.
for from_idx in (1..assignments.len()).rev() {
let (write_half, read_half) = assignments.split_at_mut(from_idx);
let from = &mut read_half[0];
// Scan all pages before this one.
for to in write_half {
try_decanting(to, from);
// If the tile is now empty, remove it.
// Doing this now reduces the the number of iterations performed by later steps.
// NB: order is intentionally preserved so as not to alter the "decantation"'s properties.
// NB: this does mean that the first step might get empty pages in its input!
// NB: this is safe to do because we go towards the beginning of the vector, thereby not
// invalidating our iteration (thus, iterators should not be used to drive the outer loop).
if from.assigned.is_empty() {
assignments.remove(from_idx);
break;
}
}
}
}
// Decant on pages.
decant_on(
|to, from| {
// If the entire pages can be merged, move all of `from`'s tiles.
if to.combined_volume(
from.assigned
.iter()
.flat_map(|tile_ref| tiles[tile_ref.tile_idx].as_ref()),
tiles,
) <= page_size
{
to.assigned.append(&mut from.assigned);
}
},
assignments,
);
// Decant on "components" (= tiles sharing symbols).
decant_on(
|to, from| {
// We need to iterate on all the "components", which are groups of tiles sharing at least
// one symbol with another tile in the group.
// (But they need not all share one common symbol!)
// We do this by adding the first available tile, and then looking for tiles with common
// symbols. (As an optimisation, we know we can skip tiles already scanned.)
// Note that, after adding a tile, we need to re-iterate on all of them!
// Some tiles that have been iterated past may be "connected" to the one that has been
// newly added (but none other in the set).
// Note that we have to round the number of bytes up, not down.
let mut processed = vec![0u8; (from.assigned.len() + 7) / 8];
let mut symbols = HashSet::new();
let mut members = Vec::new();
// Find the first byte that reports an un-processed symbol.
while let Some(byte_idx) = processed.iter().position(|&byte| byte != 0xFF) {
let bit_idx = processed[byte_idx].trailing_ones() as usize;
let idx = byte_idx * 8 + bit_idx;
// Due to the rounding-up, it's possible that the resulting index is actually higher
// than the number of tile refs.
let Some(slice) = from.assigned.get(idx..) else {
break;
};
let Some(first) = slice.first() else {
// It is possible for the slice to be empty.
break;
};
// Seed the "component" with the
members.clear();
members.push(idx);
symbols.extend(tiles[first.tile_idx].as_ref());
let mut rescan = true;
while rescan {
rescan = false;
for (i, tile_ref) in std::iter::zip(idx.., slice) {
let processed_byte = &mut processed[i / 8];
let processed_mask = 1 << (i % 8);
if *processed_byte & processed_mask != 0 {
continue;
}
let tile = &tiles[tile_ref.tile_idx];
// If this is the first tile, or if at least one of its symbols matches, add it.
let tile_symbols: HashSet<_> = tile.as_ref().iter().collect();
if !symbols.is_disjoint(&tile_symbols) {
symbols.extend(tile_symbols);
// We need to keep the array sorted for the later removal to work.
members.insert(members.partition_point(|&j| j <= i), i);
*processed_byte |= processed_mask;
rescan = true;
}
}
}
// So, we have the list of refs in `members`, and the set of symbols they contain in
// `symbols`.
// The latter has to be sorted, because removing an element alters the indices of at
// least one of the subsequent ones, which could mess up subsequent removals.
debug_assert_eq!(
members.windows(2).find(|pair| pair[0] > pair[1]),
None,
"Members array {members:?} is not sorted"
);
if to.combined_volume(symbols.drain(), tiles) <= page_size {
// Extract the "component" into the target page.
for idx in members.iter().rev() {
let symbol = from.assigned.swap_remove(*idx);
to.assigned.push(symbol);
}
}
}
},
assignments,
);
// And finally, decant on individual tiles.
decant_on(
|to, from| {
for i in (0..from.assigned.len()).rev() {
if to.combined_volume(tiles[from.assigned[i].tile_idx].as_ref(), tiles) <= page_size
{
let symbol = from.assigned.swap_remove(i);
to.assigned.push(symbol);
}
}
},
assignments,
);
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct TileRef {
tile_idx: usize,
banned_from: Vec<u8>,
}
/// A collection of references to tiles.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct AssignedTiles {
assigned: Vec<TileRef>,
}
impl TileRef {
fn new(tile_idx: usize) -> Self {
Self {
tile_idx,
banned_from: vec![],
}
}
fn is_banned_from(&self, page_idx: usize) -> bool {
let byte_idx = page_idx / 8;
let bit_idx = page_idx % 8;
self.banned_from
.get(byte_idx)
.map_or(false, |byte| byte & (1 << bit_idx) != 0)
}
fn ban_from(&mut self, page_idx: usize) {
let byte_idx = page_idx / 8;
let bit_idx = page_idx % 8;
if self.banned_from.len() <= byte_idx {
self.banned_from.resize(byte_idx + 1, 0);
}
self.banned_from[byte_idx] |= 1 << bit_idx;
}
}
impl AssignedTiles {
/// Returns an iterator through the IDs of the tiles referenced by this page.
pub fn referenced_tile_ids(&self) -> impl Iterator<Item = usize> + '_ {
self.assigned.iter().map(|tile_ref| tile_ref.tile_idx)
}
/// Returns an iterator through the tiles referenced by this page.
pub fn referenced_tiles<
'this,
'tiles: 'this,
Tile: 'tiles + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
&'this self,
tiles: &'tiles C,
) -> impl Iterator<Item = &'tiles Tile> + '_ {
self.assigned
.iter()
.map(|tile_ref| &tiles[tile_ref.tile_idx])
}
/// Gather a set of all the symbols contained in this page's tiles.
///
/// Due to [the nature of a set][HashSet], each symbol is only referenced a single time.
pub fn unique_symbols<
'tiles,
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized + 'tiles,
C: Index<usize, Output = Tile> + ?Sized,
>(
&self,
tiles: &'tiles C,
) -> HashSet<&'tiles Symbol> {
self.referenced_tiles(tiles)
.flat_map(|tile| tile.as_ref().iter())
.collect()
}
fn volume<
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
&self,
tiles: &C,
) -> usize {
self.unique_symbols(tiles).len()
}
fn can_fit<
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
&self,
tile: &Tile,
page_size: usize,
tiles: &C,
) -> bool {
let mut unique_symbols = self.unique_symbols(tiles);
unique_symbols.extend(tile.as_ref().iter());
unique_symbols.len() <= page_size
}
fn relative_size_of<
Symbol: Eq + Hash,
Tile: AsRef<[Symbol]> + ?Sized,
C: Index<usize, Output = Tile> + ?Sized,
>(
&self,
tile: &Tile,
tiles: &C,
) -> f64 {
tile.as_ref().iter().fold(0., |acc, symbol| {
let n = self
.referenced_tiles(tiles)
.filter(|referenced_tile| referenced_tile.as_ref().contains(symbol))
.count();
acc + 1. / (1 + n) as f64
})
}
fn combined_volume<
'tiles,
Symbol: Eq + Hash + 'tiles,
Tile: AsRef<[Symbol]> + ?Sized + 'tiles,
C: Index<usize, Output = Tile> + ?Sized,
It: IntoIterator<Item = &'tiles Symbol>,
>(
&self,
iter: It,
tiles: &'tiles C,
) -> usize {
let mut symbols = self.unique_symbols(tiles);
symbols.extend(iter);
symbols.len()
}
}
fn minmax_by_key<K: PartialOrd + Copy, T: Copy, It: IntoIterator<Item = T>, F: FnMut(T) -> K>(
it: It,
mut key_func: F,
) -> Option<[(K, T); 2]> {
let mut iter = it.into_iter().map(|item| (key_func(item), item));
let first = iter.next()?;
let mut min = first;
let mut max = first;
for item in iter {
if item.0 < min.0 {
min = item;
} else if item.0 > max.0 {
max = item;
}
}
Some([min, max])
}